Houria Daimi
University of Jaén
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Houria Daimi.
Circulation-cardiovascular Genetics | 2011
Ana Chinchilla; Houria Daimi; Estefanía Lozano-Velasco; Jorge N. Domínguez; Ricardo Caballero; Eva Delpón; Juan Tamargo; Juan Cinca; Leif Hove-Madsen; Amelia Aranega; Diego Franco
Background— Pitx2 is a homeobox transcription factor that plays a pivotal role in early left/right determination during embryonic development. Pitx2 loss-of-function mouse mutants display early embryonic lethality with severe cardiac malformations, demonstrating the importance of Pitx2 during cardiogenesis. Recently, independent genome-wide association studies have provided new evidence for a putative role of PITX2 in the adult heart. These studies have independently reported several risk variants close to the PITX2 locus on chromosome 4q25 that are strongly associated with atrial fibrillation in humans. Methods and Results— We show for the first time that PITX2C expression is significantly decreased in human patients with sustained atrial fibrillation, thus providing a molecular link between PITX2 loss of function and atrial fibrillation. In addition, morphological, molecular, and electrophysiological characterization of chamber-specific Pitx2 conditional mouse mutants reveals that atrial but not ventricular chamber-specific deletion of Pitx2 results in differences in the action potential amplitude and resting membrane potential in the adult heart as well as ECG characteristics of atrioventricular block. Lack of Pitx2 in atrial myocardium impairs sodium channel and potassium channel expression, mediated in part by miRNA misexpression. Conclusions— This study thus identifies Pitx2 as an upstream transcriptional regulator of atrial electric function, the insufficiency of which results in cellular and molecular changes leading to atrial electric and structural remodeling linked to arrhythmogenesis.
Cardiovascular Research | 2011
Ana Chinchilla; Estefania Lozano; Houria Daimi; Francisco J. Esteban; Colin G. Crist; Amelia Aranega; Diego Franco
AIMS non-coding RNA has been recently demonstrated to be a novel mechanism for modulation of gene expression at the post-transcriptional level. The importance of microRNAs in the cardiovascular system is now apparent. Mutations of distinct microRNAs have provided evidence for fundamental roles of microRNAs during cardiovascular development. However, there is limited information about global microRNA profiles during mouse heart development. In this study, we have gained insight from the expression profiles of microRNAs during mouse ventricular development by microarray and qRT-PCR analysis. METHODS AND RESULTS our microarray analysis reveals that relatively few microRNAs display either increasing or decreasing expression profiles during ventricular chamber formation. Interestingly, most of the differentially expressed microRNAs display a rather discrete peak of expression at particular developmental stages. Furthermore, we demonstrate that microRNA-27b (miR-27b) displays an overt myocardial expression during heart development and that the transcription factor-encoding gene Mef2c is an miR-27b target. CONCLUSION our data present a comprehensive profile of microRNA expression during ventricular maturation, providing an entry point for investigation of the functional roles of the most abundantly and differentially expressed microRNAs during cardiogenesis.
Hemoglobin | 2010
Amel Haj Khelil; Sabri Denden; Nadia Leban; Houria Daimi; Ramzi Lakhdhar; Gérard Lefranc; Jemni Ben Chibani; Pascale Perrin
Hemolytic anemias are very common diseases. Among these diseases, hemoglobinopathies are widely spread throughout the Mediterranean Basin, including North Africa (Tunisia, Algeria and Morocco). Their severity and disabling nature make them a major public health problem. This study includes our data on the Tunisian hemoglobinopathies together with all the reports concerning epidemiological, clinical and molecular aspects in Algerian and Moroccan populations. Investigation methods begin with the application of several techniques for hemoglobin (Hb) analyses [electrophoresis and isoelectric focusing (IEF), micro-chromatography assay] of anemic patients in various hospital departments. Molecular investigation by DNA analyses completes the hematological and biochemical studies using polymerase chain reaction (PCR) followed by enzymatic digestion and/or denaturing gradient gel electrophoresis (DGGE), single strand conformation polymorphism (SSCP) and sequencing. These methods offer screening for a large number of families affected by sickle cell disease and thalassemia. In Tunisia, Algeria, and Morocco, more than 45 mutations have been identified on the β-globin gene. The most common in Tunisia and in Algeria are codon 39 (C>T) and IVS-I-110 (G>A), which together account for more than 50% of all mutations. In Morocco, the predominant mutations are codon 39 and frameshift codon (FSC) 8 (–AA). The identification of molecular defects in the βgene contributes to the development of diagnostic tests (prenatal diagnosis), and gives us the opportunity to help many couples. Our studies of the haplotypes of the βS, codon 39 and IVS-I-110 origins allowed the hypothesis of a Benin origin for βS, a local North African origin for codon 39 and an Eastern Mediterranean origin for IVS-I-110. The analysis of polymorphisms associated with a moderate phenotype of β-thalassemia (β-thal) and sickle cell disease in North Africa has shown, in several cases, a strong association with some mutations and restriction fragment length polymorphisms (RFLP) haplotype IX on the β-globin locus and the −158 (C>T) polymorphism in 5′ on the Gγ-globin gene. Finally, more knowledge on the regulation of the β-globin locus may contribute to the improvement of investigation, monitoring and treatment of hemoglobinopathies.
Cardiovascular Research | 2011
Diego Franco; Ana Chinchilla; Houria Daimi; Jorge N. Domínguez; Amelia Aranega
The development of the heart is a complex process during which different cell types progressively contribute to shape a four-chambered pumping organ. Over the last decades, our understanding of the specification and transcriptional regulation of cardiac development has been greatly augmented as has our understanding of the functional bases of cardiac electrophysiology during embryogenesis. The nascent heart gradually acquires distinct cellular and functional characteristics, such as the formation of contractile structures, the development of conductive capabilities, and soon thereafter the co-ordinated conduction of the electrical impulse, in order to fulfil its functional properties. Over the last decade, we have learnt about the consequences of impairing cardiac morphogenesis, which in many cases leads to congenital heart defects; however, we are not yet aware of the consequences of impairing electrical function during cardiogenesis. The most prevalent cardiac arrhythmia is atrial fibrillation (AF), although its genetic aetiology remains rather elusive. Recent genome-wide association studies have identified several genetic variants highly associated with AF. Among them are genetic variants located on chromosome 4q25 adjacent to PITX2, a transcription factor known to play a critical role in left-right asymmetry and cardiogenesis. Here, we review new insights into the cellular and molecular links between PITX2 and AF.
Heart Rhythm | 2015
Houria Daimi; Estefanía Lozano-Velasco; Amel Haj Khelil; Jemni Ben Chibani; Adriana Barana; Irene Amorós; Marta González de la Fuente; Ricardo Caballero; Amelia Aranega; Diego Franco
BACKGROUND The human cardiac action potential in atrial and ventricular cells is initiated by a fast-activating, fast-inactivating sodium current generated by the SCN5A/Nav1.5 channel in association with its β1/SCN1B subunit. The role of Nav1.5 in the etiology of many cardiac diseases strongly suggests that proper regulation of cell biology and function of the channel is critical for normal cardiac function. Hence, numerous recent studies have focused on the regulatory mechanisms of Nav1.5 biosynthetic and degradation processes as well as its subcellular localization. OBJECTIVE The purpose of this study was to investigate the role of microRNAs in the Scn5a/Nav1.5 posttranscriptional regulation. METHODS Quantitative polymerase chain reaction, immunohistochemical and electrophysiological measurements of distinct microRNA gain-of-function experiments in cardiomyocytes for the assessment of Scn5a expression. RESULTS Functional studies of HL-1 cardiomyocytes and luciferase assays in fibroblasts demonstrate that Scn5a is directly (miR-98, miR-106, miR-200, and miR-219) and indirectly (miR-125 and miR-153) regulated by multiple microRNAs displaying distinct time-dependent profiles. Cotransfection experiments demonstrated that miR-219 and miR-200 have independent opposite effects on Scn5a expression modulation. Of all the microRNAs studied, only miR-219 increases Scn5a expression levels, leading to altered contraction rhythm of HL-1 cardiomyocytes. Electrophysiological analyses in HL-1 cells revealed that miR-219 increases the sodium current. In vivo administration of miR-219 does not alter normal cardiac rhythm, but abolishes some of the effects of flecainide intoxication in mice, particularly QRS prolongation. CONCLUSION This study demonstrates the involvement of multiple microRNAs in the regulation of Scn5a. Particularly, miR-219 increases Scn5a/Nav1.5 transcript and protein expression. Our data suggest that microRNAs, such as miR-219, constitute a promising therapeutical tool to treat sodium cardiac arrhythmias.
Cardiovascular Research | 2016
Estefanía Lozano-Velasco; Francisco Hernández-Torres; Houria Daimi; Selma A. Serra; Adela Herraiz; Leif Hove-Madsen; Amelia Aranega; Diego Franco
AIMS Atrial fibrillation (AF) is the most common type of arrhythmia in humans, yet the genetic cause of AF remains elusive. Genome-wide association studies (GWASs) have reported risk variants in four distinct genetic loci, and more recently, a meta-GWAS has further implicated six new loci in AF. However, the functional role of these AF GWAS-related genes in AF and their inter-relationship remain elusive. METHODS AND RESULTS To get further insights into the molecular mechanisms driven by Pitx2, calcium handling and novel AF GWAS-associated gene expression were analysed in two distinct Pitx2 loss-of-function models with distinct basal electrophysiological defects; a novel Pitx2 conditional mouse line, Sox2CrePitx2, and our previously reported atrial-specific NppaCrePitx2 line. Molecular analyses of the left atrial appendage in NppaCrePitx2(+/-) and NppaCrePitx2(-/-) adult mice demonstrate that AF GWAS-associated genes such as Zfhx3, Kcnn3, and Wnt8a are severely impaired but not Cav1, Synpo2l, nor Prrx1. In addition, multiple calcium-handling genes such as Atp2a2, Casq2, and Plb are severely altered in atrial-specific NppaCrePitx2 mice in a dose-dependent manner. Functional assessment of calcium homeostasis further underscores these findings. In addition, multiple AF-related microRNAs are also impaired. In vitro over-expression of Wnt8, but not Zfhx3, impairs calcium handling and modulates microRNA expression signature identified in Pitx2 loss-of-function models. CONCLUSION Our data demonstrate a dose-dependent relation between Pitx2 expression and the expression of AF susceptibility genes, calcium handling, and microRNAs and identify a complex regulatory network orchestrated by Pitx2 with large impact on atrial arrhythmogenesis susceptibility.
Disease Markers | 2011
Ramzi Lakhdar; Sabri Denden; Jalel Knani; Nadia Leban; Houria Daimi; Mohsen Hassine; Gérard Lefranc; Jemni Ben Chibani; Amel Haj Khelil
Smoking is considered as the major causal factor of chronic obstructive pulmonary disease (COPD). Nevertheless, a minority of chronic heavy cigarette smokers develops COPD. This suggests important contribution of other factors such as genetic predisposing. Our objective was to investigate combined role of EPHX1, GSTP1, M1 and T1 gene polymorphisms in COPD risk, its phenotypes and lung function impairment. Prevalence of EPHX1, GSTP1, M1 and T1 gene polymorphisms were assessed in 234 COPD patients and 182 healthy controls from Tunisia. Genotypes of EPHX1 (Tyr113His; His139Arg) and GSTP1 (Ile105Val; Ala114Val) polymorphisms were performed by PCR-RFLP, while the deletion in GSTM1 and GSTT1 genes was determined using multiplex PCR. Analysis of combinations showed a significant association of 113His/His EPHX1/null-GSTM1 (OR = 4.07) and null-GSTM1/105Val/Val GSTP1 (OR = 3.56) genotypes with increased risk of COPD (respectively P=0.0094 and P=0.0153). The null-GSTM1/ null-GSTT1, 105Val/Val GSTP1/null GSTT1, 113His/His EPHX1/null-GSTM1 and null-GSTM1/105Val/Val GSTP1 genotypes were related to emphysema (respectively P = 0.01; P = 0.009; P = 0.008 and P = 0.001). Combination of 113His/His EPHX1/null-GSTM1 genotypes showed a significant association with the decrease of ΔFEV1 in patients (P = 0.028). In conclusion, our results suggest combined EPHX1, GSTP1, GSTM1 and GSTT1 genetic polymorphisms may play a significant role in the development of COPD, emphysema and decline of the lung function.
Genetics and Molecular Research | 2010
Ramzi Lakhdar; Sabri Denden; Jalel Knani; Nadia Leban; Houria Daimi; Mohsen Hassine; Gérard Lefranc; J. Ben Chibani; A. Haj Khelil
Chronic obstructive pulmonary disease (COPD) is a multifactorial disease with possible genetic predisposition and involvement of various environmental factors. Several candidate genes have been reported as potentially associated with this lung disease. The glutathione S-transferase P1 gene (GSTP1) was proposed to be involved in susceptibility to develop COPD. It belongs to the GST family, which is a group of phase II enzymes that catalyze the glutathione conjugation of many endogenous and exogenous electrophilic compounds, such as carcinogens, therapeutic drugs, environmental toxins, and oxidative stress products. We conducted a case-control study to investigate genetic polymorphisms of this enzyme [exon 5 (Ile105Val) and exon 6 (Ala114Val)] in 234 unrelated COPD cases and 182 healthy controls from a Tunisian population. Genotyping was carried out using polymerase chain reaction and restriction fragment length polymorphism methods. GSTP1 Ala114/Val114 and Val114/Val114 genotypes were not found in either patients or healthy controls. However, there were differences in the distribution of various exon 5 GSTP1 genotypes between COPD patients and healthy controls. GSTP1 Val105/Val105 was significantly more common in patients compared to controls (OR = 2.67; 95%CI = 1.45-4.92; P = 0.0013). Multivariate logistic regression analysis confirmed a significant relationship between the mutant genotype and COPD (OR = 2.58; 95%CI = 1.31-5.09; P = 0.026), after adjustment for classic risk factors. Analysis of variance showed no correlation between age, body-mass index, pack-years, percentage of predicted FEV1 values, and any of the GSTP1 genotypes. We conclude that subjects with GSTP1 Val105 allele are at higher risk of COPD.
Genetic Testing and Molecular Biomarkers | 2010
Ramzi Lakhdar; Sabri Denden; Jalel Knani; Nadia Leban; Houria Daimi; Mohsen Hassine; Gérard Lefranc; Jemni Ben Chibani; Amel Haj Khelil
It is well known that cigarette smoking is the major risk factor for chronic obstructive pulmonary disease (COPD). However, only 10%-20% of chronic heavy cigarette smokers develop symptomatic disease, which suggests the presence of genetic susceptibility. Microsomal epoxide hydrolase (EPHX1) is an enzyme involved in the protective mechanism against oxidative stress. It has been reported that gene polymorphisms of this enzyme may be associated with variations in EPHX1 activity. In this study, we aimed at investigating the relationship between EPHX1 polymorphisms and susceptibility to COPD in the Tunisian population. EPHX1 exon 3 (rs1051740, Tyr113His) and exon 4 (rs2234922, His139Arg) polymorphisms were genotyped by polymerase chain reaction followed by restriction fragment length polymorphism analysis. These techniques were used to examine a total of 416 Tunisian individuals, including 182 blood donors and a group of 234 COPD patients. All subjects were not related. An increased risk for COPD was observed in subjects with EPHX1 His113-His113 genotype (odds ratio = 2.168; confidence interval 1.098-4.283; p = 0.02386). However, multivariate logistic regression analysis showed no significant relationship between the mutant genotype and the disease after adjustment for sex, age, body mass index, smoking status, and pack-year smoking (odds ratio = 1.524; confidence interval, 0.991-6.058; p = 0.06137). Regarding the two subtypes of COPD, our investigations demonstrated that there is no significant correlation between exon 3 polymorphism and the chronic bronchitis subgroup (p = 0.09034). The relation between exon 3 polymorphism and emphysema was significant in the univariate analysis (p = 0.02257), but no association was found after controlling for classic risk factors (p = 0.06273). In conclusion, our results showed that there is a weak relation between 113His genotype and COPD, and no apparent relation between 139Arg and COPD in the studied Tunisian population.
Archive | 2018
Houria Daimi; Amel Haj Khelil; Khaldoun Ben Hamda; Amelia Aranega; Jemni Ben Chibani; Diego Franco
Abstract Brugada syndrome is an inherited arrhythmia characterized by a particular ECG pattern typically distinguished by a coved-type ST segment elevation in the right precordial leads, conferring a high risk of sudden cardiac death in young adults and less frequently in infants and children. The ST segment elevation in the Brugada syndrome can be very dynamic and modified by several factors such as fever, diet, and raised plasma insulin concentration, autonomic activity, alcohol and cocaine toxicity, and medication. Approximately 20%–25% of BrS patients are genetically diagnosed with pathogenic variations in SCN5A gene encoding for the cardiac sodium channel. However, known BrS-susceptibility genes can only explain 30%–35% of clinically diagnosed cases, indicating that 65%–70% of BrS patients remain genetically unsolved. The incomplete penetrance of BrS mutations and the dynamic ECG manifestations confer difficulties in establishing a clear genotype-phenotype correlation. Brugada syndrome patients are particularly recommended to follow a lifestyle where the ECG triggering factors should be avoided in order to minimize the risk of Brugada-associated arrhythmia and sudden death.