Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Houyu Wang is active.

Publication


Featured researches published by Houyu Wang.


Angewandte Chemie | 2015

Simultaneous Capture, Detection, and Inactivation of Bacteria as Enabled by a Surface-Enhanced Raman Scattering Multifunctional Chip†

Houyu Wang; Yanfeng Zhou; Xiangxu Jiang; Bin Sun; Ying Zhu; Hui Wang; Yuanyuan Su; Yao He

Herein, we present a multifunctional chip based on surface-enhanced Raman scattering (SERS) that effectively captures, discriminates, and inactivates pathogenic bacteria. The developed SERS chip is made of a silicon wafer decorated with silver nanoparticles and modified with 4-mercaptophenylboronic acid (4-MPBA). It was prepared in a straightforward manner by chemical reduction assisted by hydrogen fluoride etching, followed by the conjugation of 4-MPBA through AgS bonds. The dominant merits of the fabricated SERS chip include excellent reproducibility with a relative standard deviation (RSD) value smaller than 11.0 %, adaptable bacterial-capture efficiency (ca. 60 %) at low concentrations (500-2000 CFU mL(-1) ), a low detection limit (down to a concentration of 1.0×10(2)  cells mL(-1) ), and high antibacterial activity (an antibacterial rate of ca. 97 %). The SERS chip enabled sensitive and specific discrimination of Escherichia coli and Staphylococcus aureus from human blood.


Analytical Chemistry | 2015

Surface-Enhancement Raman Scattering Sensing Strategy for Discriminating Trace Mercuric Ion (II) from Real Water Samples in Sensitive, Specific, Recyclable, and Reproducible Manners

Bin Sun; Xiangxu Jiang; Houyu Wang; Bin Song; Ying Zhu; Hui Wang; Yuanyuan Su; Yao He

It is of essential importance to precisely probe mercury(II) (Hg(2+)) ions for environment-protection analysis and detection. To date, there still remain major challenges for accurate, specific, and reliable detection of Hg(2+) ions at subppt level. We herein employ gold nanoparticles (AuNPs) decorated silicon nanowire array (SiNWAr) as active surface-enhanced Raman scattering (SERS) substrates to construct a high-performance sensing platform assisted by DNA technology, enabling ultrasensitive detection of trace Hg(2+) in ∼64 min and with low sample consumption (∼30 μL). Typically, strong SERS signals could be detected when the single-stranded DNA structure converts to the hairpin structure in the presence of Hg(2+) ions, due to the formation of thymine (T)-Hg(2+)-T. As a result, Hg(2+) ions with a low concentration of 1 pM (0.2 ppt) can be readily discriminated, much lower than those (∼nM) reported for conventional analytical strategies. Water samples spiked with various Hg(2+) concentrations are further tested, exhibiting a good linear relationship between the normalized Raman intensities and the logarithmic concentrations of Hg(2+) ranging from 1 pM to 100 nM, with a correlation coefficient of R(2) = 0.998. In addition, such SERS sensor features excellent selectivity, facilely distinguishing Hg(2+) ions from various interfering substances. Moreover, this presented SERS sensor possesses good recyclability, preserving adaptable reproducibility during 5-time cyclic detection of Hg(2+). Furthermore, unknown Hg(2+) concentration in river water can be readily determined through our sensing strategy in accurate and reliable manners, with the RSD value of ∼9%.


Small | 2014

Silicon Nanohybrid-based Surface-enhanced Raman Scattering Sensors

Houyu Wang; Xiangxu Jiang; Shuit-Tong Lee; Yao He

Nanomaterial-based surface-enhanced Raman scattering (SERS) sensors are highly promising analytical tools, capable of ultrasensitive, multiplex, and nondestructive detection of chemical and biological species. Extensive efforts have been made to design various silicon nanohybrid-based SERS substrates such as gold/silver nanoparticle (NP)-decorated silicon nanowires, Au/Ag NP-decorated silicon wafers (AuNP@Si), and so forth. In comparison to free AuNP- and AgNP-based SERS sensors, the silicon nanohybrid-based SERS sensors feature higher enhancement factors (EFs) and excellent reproducibility, since SERS hot spots are efficiently coupled and stabilized through interconnection to the semiconducting silicon substrates. Consequently, in the past decade, giant advancements in the development of silicon nanohybrid-based SERS sensors have been witnessed for myriad sensing applications. In this review, the representative achievements related to the design of high-performance silicon nanohybrid-based SERS sensors and their use for chemical and biological analysis are reviewed in a detailed way. Furthermore, the major opportunities and challenges in this field are discussed from a broad perspective and possible future directions.


Analytical Chemistry | 2016

Ultrasensitive, Specific, Recyclable, and Reproducible Detection of Lead Ions in Real Systems through a Polyadenine-Assisted, Surface-Enhanced Raman Scattering Silicon Chip.

Yu Shi; Houyu Wang; Xiangxu Jiang; Bin Sun; Bin Song; Yuanyuan Su; Yao He

It is of great significance to accurately and reliably detect trace lead(II) (Pb(2+)) ions, preferably at sub-nM level due to the possible long-term accumulation of Pb(2+) in the human body, which may cause serious threats to human health. However, a suitable Pb(2+) sensor meeting the demands is still scanty. Herein, we develop a polyadenine-assisted, surface-enhanced Raman scattering (SERS) silicon chip (0.5 cm × 0.5 cm) composed of core (Ag)-satellite (Au) nanoparticles (Ag-Au NPs)-decorated silicon wafers (Ag-Au NPs@Si) for high-performance Pb(2+) detection. Typically, strong SERS signals could be measured when DNAzyme conjugated on the SERS silicon chip is specifically activated by Pb(2+), cleaving the substrate strand into two free DNA strands. A good linearity exists between the normalized Raman intensities and the logarithmic concentrations of Pb(2+) ranging from 10 pM to 1 μM with a good correlation coefficient, R(2) of 0.997. Remarkably, Pb(2+) ions with a low concentration of 8.9 × 10(-12) M can be readily determined via the SERS silicon chip ascribed to its superior SERS enhancement, much lower than those (∼nM) reported by other SERS sensors. Additionally, the developed chip features good selectivity and recyclability (e.g., ∼11.1% loss of Raman intensity after three cycles). More importantly, the as-prepared chip can be used for accurate and reliable determination of unknown Pb(2+) ions in real systems including lake water, tap water and industrial wastewater, with the RSD value less than 12%.


Analytical Chemistry | 2017

Portable and Reliable Surface-Enhanced Raman Scattering Silicon Chip for Signal-On Detection of Trace Trinitrotoluene Explosive in Real Systems

Na Chen; Pan Ding; Yu Shi; Tengyu Jin; Yuanyuan Su; Houyu Wang; Yao He

There is an increasing interest in the development of surface-enhanced Raman scattering (SERS) sensors for rapid and accurate on-site detection of hidden explosives. However, portable SERS methods for trace explosive detection in real systems remain scarce, mainly due to their relatively poor reliability and portability. Herein, we present the first demonstration of a portable silicon-based SERS analytical platform for signal-on detection of trace trinitrotoluene (TNT) explosives, which is made of silver nanoparticle (AgNP)-decorated silicon wafer chip (0.5 cm × 0.5 cm). In principle, under 514 nm excitation, the Raman signals of p-aminobenzenethiol (PABT) modified on the AgNP surface could be largely lit up due to the formation of electronic resonance-active TNT-PABT complex. In addition, the surface of AgNPs and silicon substrate-induced plasmon resonances also contribute the total SERS enhancement. For quantitative evaluation, the as-prepared chip features ultrahigh sensitivity [limit of detection is down to ∼1 pM (∼45.4 fg/cm2)] and adaptable reproducibility (relative standard deviation is less than 15%) in the detection of TNT standard solutions. More importantly, the developed chip can couple well with a hand-held Raman spectroscopic device using 785 nm excitation, suitable for qualitative analysis of trace TNT even at ∼10-8 M level from environmental samples including lake water, soil, envelope, and liquor with a short data acquisition time (∼1 min). Furthermore, TNT vapors diffusing from TNT residues (∼10-6 M) can be detected by using such a portable device, indicating its feasibility in determination of hidden samples.


Analytical Chemistry | 2013

Simple boric acid-based fluorescent focusing for sensing of glucose and glycoprotein via multipath moving supramolecular boundary electrophoresis chip.

Jing-Yu Dong; Si Li; Houyu Wang; Qinghua Meng; Liu-Yin Fan; Haiyang Xie; Cheng-Xi Cao; Wei-Bing Zhang

Boric acid-based fluorescent complex probe of BBV-HPTS (boronic acid-based benzyl viologen (BBV) and hydroxypyrene trisulfonic acid trisodium salt (HPTS)) was rarely used for sensitive sensing of saccharide (especially glycoprotein) via electrophoresis. We proposed a novel model of moving supramolecular boundary (MSB) formed with monosaccharide or glycoprotein in microcolumn and the complex probe of BBV-HPTS in the cathodic injection tube, developed a method of MSB fluorescent focusing for sensitive recognition of monosaccharide and glycoprotein, and designed a special multipath capillary electrophoresis (CE) chip for relative experiments. As a proof of concept, glucose and hemoglobin A1c (HbA1c) were respectively used as the mode saccharide and glycoprotein for the relevant demonstration. The experiments revealed that (i) the complex of BBV-HPTS could interact with free glucose or bound one in glycoprotein; (ii) the fluorescent signal was a function of glucose or glycoprotein content approximately; and (iii) interestingly the fluorescent band motion was dependent on glucose content. The developed method had the following merits: (i) low cost; (ii) low limit of detection (down to 1.39 pg/mL for glucose and 2.0 pg per capillary HbA1c); and (iii) high throughput (up to 12 runs or more per patch) and speed (less than 5 min). The developed method has potential use for sensitive monitoring of monosaccharide and glycoprotein in biomedical samples.


Analytical Chemistry | 2016

Fluorescent and Photostable Silicon Nanoparticles Sensors for Real-Time and Long-Term Intracellular pH Measurement in Live Cells

Binbin Chu; Houyu Wang; Bin Song; Fei Peng; Yuanyuan Su; Yao He

Fluorescent sensors suitable for dynamic measurement of intracellular pH (pHi) fluctuations should feature the following properties: feeble cytotoxicity, wide-pH range response, and strong fluorescence coupled with good photostability, which are still remaining scanty to date. Herein, by functionalizing fluorescent silicon nanoparticles (SiNPs) with pH-sensitive dopamine (DA) and pH-insensitive rhodamine B isothiocyanate (RBITC), we present the first demonstration of fluorescent SiNPs-based sensors, simultaneously exhibiting minimal toxicity (cell viability of treated cells remains above 95% during 24-h treatment), sensitive fluorescent response to a broad pH range (∼4-10), and bright fluorescence coupled with robust photostability (∼9% loss of fluorescence intensity after 40 min continuous excitation; in contrast, fluorescence of Lyso-tracker is rapidly quenched in 5 min under the same experiment conditions). Taking advantage of these merits, we further employ the resultant fluorescent SiNPs sensors for the detection of lysosomal pH change mediated by nigericin in live HeLa and MCF-7 cells in long-term (e.g., 30 min) manners. Interestingly, two consecutive stages, i.e., alkalization lag phase and logarithmic growth phase, are observed based on recording the whole process of pH change, offering important information for understanding the dynamic process of pHi fluctuations.


Electrophoresis | 2013

Fast and selective determination of total protein in milk powder via titration of moving reaction boundary electrophoresis

Chengye Guo; Houyu Wang; Xiao-Ping Liu; Liu-Yin Fan; Lei Zhang; Cheng-Xi Cao

In this paper, moving reaction boundary titration (MRBT) was developed for rapid and accurate quantification of total protein in infant milk powder, from the concept of moving reaction boundary (MRB) electrophoresis. In the method, the MRB was formed by the hydroxide ions and the acidic residues of milk proteins immobilized via cross‐linked polyacrylamide gel (PAG), an acid‐base indicator was used to denote the boundary motion. As a proof of concept, we chose five brands of infant milk powders to study the feasibility of MRBT method. The calibration curve of MRB velocity versus logarithmic total protein content of infant milk powder sample was established based on the visual signal of MRB motion as a function of logarithmic milk protein content. Weak influence of nonprotein nitrogen (NPN) reagents (e.g., melamine and urea) on MRBT method was observed, due to the fact that MRB was formed with hydroxide ions and the acidic residues of captured milk proteins, rather than the alkaline residues or the NPN reagents added. The total protein contents in infant milk powder samples detected via the MRBT method were in good agreement with those achieved by the classic Kjeldahl method. In addition, the developed method had much faster measuring speed compared with the Kjeldahl method.


Analytica Chimica Acta | 2013

A visual detection of protein content based on titration of moving reaction boundary electrophoresis

Houyu Wang; Chengye Guo; Chen-Gang Guo; Liu-Yin Fan; Lei Zhang; Cheng-Xi Cao

A visual electrophoretic titration method was firstly developed from the concept of moving reaction boundary (MRB) for protein content analysis. In the developed method, when the voltage was applied, the hydroxide ions in the cathodic vessel moved towards the anode, and neutralized the carboxyl groups of protein immobilized via highly cross-linked polyacrylamide gel (PAG), generating a MRB between the alkali and the immobilized protein. The boundary moving velocity (V(MRB)) was as a function of protein content, and an acid-base indicator was used to denote the boundary displacement. As a proof of concept, standard model proteins and biological samples were chosen for the experiments to study the feasibility of the developed method. The experiments revealed that good linear calibration functions between V(MRB) and protein content (correlation coefficients R>0.98). The experiments further demonstrated the following merits of developed method: (1) weak influence of non-protein nitrogen additives (e.g., melamine) adulterated in protein samples, (2) good agreement with the classic Kjeldahl method (R=0.9945), (3) fast measuring speed in total protein analysis of large samples from the same source, and (4) low limit of detection (0.02-0.15 mg mL(-1) for protein content), good precision (R.S.D. of intra-day less than 1.7% and inter-day less than 2.7%), and high recoveries (105-107%).


Analytical Chemistry | 2014

Retardation Signal for Fluorescent Determination of Total Protein Content via Rapid and Sensitive Chip Moving Reaction Boundary Electrophoretic Titration

Houyu Wang; Yongting Shi; Jian Yan; Jing-Yu Dong; Si Li; Hua Xiao; Haiyang Xie; Liu-Yin Fan; Cheng-Xi Cao

A novel concept and theory of moving reaction boundary (MRB) retardation signal (RMRB) was advanced for determination of total protein content via MRB electrophoretic titration (MRBET). The theoretical results revealed that the retardation extent of boundary displacment, viz., the RMRB value, was as a function of protein content. Thus, the RMRB value of a sample could be used to determine its total protein content according to the relevant calibration curve. To demonstrate the concept and theoretical results, a novel microdevice was designed for the relevant experiments of MRBET. The microdevice has 30 identical work cells, each of which is composed of five ultrashort single microchannels (5 mm). In the microdevice, fluorescein isothiocyanate (FITC) was used to denote MRB motion and RMRB value for the first time, the polyacrylamide gel (PAG) containing protein sample was photopolymerized in microchannels, and the MRB was created with acid or alkali and target protein sample. As compared to the classic Kjeldahl method and conventional MRBET performed in glass tube, the developed titration chip has the following merits: good sensitivity (0.3-0.4 μg/mL vs 150-200 μg/mL of protein concentration, 0.6-0.8 ng vs 30-2000 μg of absolute protein content), rapid analysis (20-60 s vs 15-200 min), and portable low-power (15 V vs 200 V).

Collaboration


Dive into the Houyu Wang's collaboration.

Top Co-Authors

Avatar

Cheng-Xi Cao

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Liu-Yin Fan

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Jing-Yu Dong

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Si Li

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Chen-Gang Guo

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Chengye Guo

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Lei Zhang

Shanghai Normal University

View shared research outputs
Top Co-Authors

Avatar

Haiyang Xie

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Jie Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Jing-Hua Yang

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge