Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hovhannes Sahakyan is active.

Publication


Featured researches published by Hovhannes Sahakyan.


Nature | 2016

The Simons Genome Diversity Project: 300 genomes from 142 diverse populations

Swapan Mallick; Heng Li; Mark Lipson; Iain Mathieson; Melissa Gymrek; Fernando Racimo; Mengyao Zhao; Niru Chennagiri; Arti Tandon; Pontus Skoglund; Iosif Lazaridis; Sriram Sankararaman; Qiaomei Fu; Nadin Rohland; Gabriel Renaud; Yaniv Erlich; Thomas Willems; Carla Gallo; Jeffrey P. Spence; Yun S. Song; Giovanni Poletti; Francois Balloux; George van Driem; Peter de Knijff; Irene Gallego Romero; Aashish R. Jha; Doron M. Behar; Claudio M. Bravi; Cristian Capelli; Tor Hervig

Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.


Science | 2015

Global diversity, population stratification, and selection of human copy-number variation.

Peter H. Sudmant; Swapan Mallick; Bradley J. Nelson; Fereydoun Hormozdiari; Niklas Krumm; John Huddleston; Bradley P. Coe; Carl Baker; Michael J. Bamshad; Lynn B. Jorde; Olga L. Posukh; Hovhannes Sahakyan; W. Scott Watkins; Levon Yepiskoposyan; M. Syafiq Abdullah; Claudio M. Bravi; Cristian Capelli; Tor Hervig; Joseph Wee; Chris Tyler-Smith; George van Driem; Irene Gallego Romero; Aashish R. Jha; Sena Karachanak-Yankova; Draga Toncheva; David Comas; Brenna M. Henn; Toomas Kivisild; Andres Ruiz-Linares; Antti Sajantila

Duplications and deletions in the human genome Duplications and deletions can lead to variation in copy number for genes and genomic loci among humans. Such variants can reveal evolutionary patterns and have implications for human health. Sudmant et al. examined copy-number variation across 236 individual genomes from 125 human populations. Deletions were under more selection, whereas duplications showed more population-specific structure. Interestingly, Oceanic populations retain large duplications postulated to have originated in an ancient Denisovan lineage. Science, this issue 10.1126/science.aab3761 Copy-number variation reveals how selection affects the human genome across the globe. INTRODUCTION Most studies of human genetic variation have focused on single-nucleotide variants (SNVs). However, copy-number variants (CNVs) affect more base pairs of DNA among humans, and yet our understanding of CNV diversity among human populations is limited. RATIONALE We aimed to understand the pattern, selection, and diversity of copy-number variation by analyzing deeply sequenced genomes representing the diversity of all humans. We compared the selective constraints of deletions versus duplications to understand population stratification in the context of the ancestral human genome and to assess differences in CNV load between African and non-African populations. RESULTS We sequenced 236 individual genomes from 125 distinct human populations and identified 14,467 autosomal CNVs and 545 X-linked CNVs with a sequence read-depth approach. Deletions exhibit stronger selective pressure and are better phylogenetic markers of population relationships than duplication polymorphisms. We identified 1036 population-stratified copy-number–variable regions, 295 of which intersect coding regions and 199 of which exhibit extreme signatures of differentiation. Duplicated loci were 1.8-fold more likely to be stratified than deletions but were poorly correlated with flanking genetic diversity. Among these, we highlight a duplication polymorphism restricted to modern Oceanic populations yet also present in the genome of the archaic Denisova hominin. This 225–kilo–base pair (kbp) duplication includes two microRNA genes and is almost fixed among human Papuan-Bougainville genomes. The data allowed us to reconstruct the ancestral human genome and create a more accurate evolutionary framework for the gain and loss of sequences during human evolution. We identified 571 loci that segregate in the human population and another 2026 loci of fixed-copy 2 in all human genomes but absent from the reference genome. The total deletion and duplication load between African and non-African population groups showed no difference after we account for ancestral sequences missing from the human reference. However, we did observe that the relative number of base pairs affected by CNVs compared to single-nucleotide polymorphisms is higher among non-Africans than Africans. CONCLUSION Deletions, duplications, and CNVs have shaped, to different extents, the genetic diversity of human populations by the combined forces of mutation, selection, and demography. Figure Global human CNV diversity and archaic introgression of a chromosome 16 duplication. (Left) The geographic coordinates of populations sampled are indicated on a world map (colored dots). The pie charts show the continental population allele frequency of a single ~225-kbp duplication polymorphism found exclusively among Oceanic populations and an archaic Denisova. (Right) The ancestral structure of this duplication locus (1) and the Denisova duplication structure (2) are shown in relation to their position on chromosome 16. We estimate that the duplication emerged ~440 thousand years ago (ka) in the Denisova and then introgressed into ancestral Papuan populations ~40 ka. In order to explore the diversity and selective signatures of duplication and deletion human copy-number variants (CNVs), we sequenced 236 individuals from 125 distinct human populations. We observed that duplications exhibit fundamentally different population genetic and selective signatures than deletions and are more likely to be stratified between human populations. Through reconstruction of the ancestral human genome, we identify megabases of DNA lost in different human lineages and pinpoint large duplications that introgressed from the extinct Denisova lineage now found at high frequency exclusively in Oceanic populations. We find that the proportion of CNV base pairs to single-nucleotide–variant base pairs is greater among non-Africans than it is among African populations, but we conclude that this difference is likely due to unique aspects of non-African population history as opposed to differences in CNV load.


Genome Research | 2015

A recent bottleneck of Y chromosome diversity coincides with a global change in culture

Monika Karmin; Lauri Saag; Mário Vicente; Melissa A. Wilson Sayres; Mari Järve; Ulvi Gerst Talas; Siiri Rootsi; Anne-Mai Ilumäe; Reedik Mägi; Mario Mitt; Luca Pagani; Tarmo Puurand; Zuzana Faltyskova; Florian Clemente; Alexia Cardona; Ene Metspalu; Hovhannes Sahakyan; Bayazit Yunusbayev; Georgi Hudjashov; Michael DeGiorgio; Eva-Liis Loogväli; Christina A. Eichstaedt; Mikk Eelmets; Gyaneshwer Chaubey; Kristiina Tambets; S. S. Litvinov; Maru Mormina; Yali Xue; Qasim Ayub; Grigor Zoraqi

It is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50-100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192-307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47-52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males.


Molecular Biology and Evolution | 2012

The Caucasus as an Asymmetric Semipermeable Barrier to Ancient Human Migrations

Bayazit Yunusbayev; Mait Metspalu; Mari Järve; Ildus Kutuev; Siiri Rootsi; Ene Metspalu; Doron M. Behar; Kärt Varendi; Hovhannes Sahakyan; R. I. Khusainova; Levon Yepiskoposyan; Elza Khusnutdinova; Peter A. Underhill; Toomas Kivisild; Richard Villems

The Caucasus, inhabited by modern humans since the Early Upper Paleolithic and known for its linguistic diversity, is considered to be important for understanding human dispersals and genetic diversity in Eurasia. We report a synthesis of autosomal, Y chromosome, and mitochondrial DNA (mtDNA) variation in populations from all major subregions and linguistic phyla of the area. Autosomal genome variation in the Caucasus reveals significant genetic uniformity among its ethnically and linguistically diverse populations and is consistent with predominantly Near/Middle Eastern origin of the Caucasians, with minor external impacts. In contrast to autosomal and mtDNA variation, signals of regional Y chromosome founder effects distinguish the eastern from western North Caucasians. Genetic discontinuity between the North Caucasus and the East European Plain contrasts with continuity through Anatolia and the Balkans, suggesting major routes of ancient gene flows and admixture.


Nature | 2016

Genomic analyses inform on migration events during the peopling of Eurasia

Luca Pagani; Daniel John Lawson; Evelyn Jagoda; Alexander Mörseburg; Anders Eriksson; Mario Mitt; Florian Clemente; Georgi Hudjashov; Michael DeGiorgio; Lauri Saag; Jeffrey D. Wall; Alexia Cardona; Reedik Mägi; Melissa A. Wilson Sayres; Sarah Kaewert; Charlotte E. Inchley; Christiana L. Scheib; Mari Järve; Monika Karmin; Guy S. Jacobs; Tiago Antao; Florin Mircea Iliescu; Alena Kushniarevich; Qasim Ayub; Chris Tyler-Smith; Yali Xue; Bayazit Yunusbayev; Kristiina Tambets; Chandana Basu Mallick; Lehti Saag

High-coverage whole-genome sequence studies have so far focused on a limited number of geographically restricted populations, or been targeted at specific diseases, such as cancer. Nevertheless, the availability of high-resolution genomic data has led to the development of new methodologies for inferring population history and refuelled the debate on the mutation rate in humans. Here we present the Estonian Biocentre Human Genome Diversity Panel (EGDP), a dataset of 483 high-coverage human genomes from 148 populations worldwide, including 379 new genomes from 125 populations, which we group into diversity and selection sets. We analyse this dataset to refine estimates of continent-wide patterns of heterozygosity, long- and short-distance gene flow, archaic admixture, and changes in effective population size through time as well as for signals of positive or balancing selection. We find a genetic signature in present-day Papuans that suggests that at least 2% of their genome originates from an early and largely extinct expansion of anatomically modern humans (AMHs) out of Africa. Together with evidence from the western Asian fossil record, and admixture between AMHs and Neanderthals predating the main Eurasian expansion, our results contribute to the mounting evidence for the presence of AMHs out of Africa earlier than 75,000 years ago.


European Journal of Human Genetics | 2012

DISTINGUISHING THE CO-ANCESTRIES OF HAPLOGROUP G Y-CHROMOSOMES IN THE POPULATIONS OF EUROPE AND THE CAUCASUS

Siiri Rootsi; Natalie M. Myres; Alice A. Lin; Mari Järve; Roy King; Ildus Kutuev; Vicente M. Cabrera; Elza Khusnutdinova; Kärt Varendi; Hovhannes Sahakyan; Doron M. Behar; R. I. Khusainova; Oleg Balanovsky; Elena Balanovska; Pavao Rudan; Levon Yepiskoposyan; Ardeshir Bahmanimehr; Shirin Farjadian; Alena Kushniarevich; Rene J. Herrera; Viola Grugni; Vincenza Battaglia; Carmela Nici; F. Crobu; Sena Karachanak; Baharak Hooshiar Kashani; Massoud Houshmand; Mohammad Hossein Sanati; Draga Toncheva; Antonella Lisa

Haplogroup G, together with J2 clades, has been associated with the spread of agriculture, especially in the European context. However, interpretations based on simple haplogroup frequency clines do not recognize underlying patterns of genetic diversification. Although progress has been recently made in resolving the haplogroup G phylogeny, a comprehensive survey of the geographic distribution patterns of the significant sub-clades of this haplogroup has not been conducted yet. Here we present the haplogroup frequency distribution and STR variation of 16 informative G sub-clades by evaluating 1472 haplogroup G chromosomes belonging to 98 populations ranging from Europe to Pakistan. Although no basal G-M201* chromosomes were detected in our data set, the homeland of this haplogroup has been estimated to be somewhere nearby eastern Anatolia, Armenia or western Iran, the only areas characterized by the co-presence of deep basal branches as well as the occurrence of high sub-haplogroup diversity. The P303 SNP defines the most frequent and widespread G sub-haplogroup. However, its sub-clades have more localized distribution with the U1-defined branch largely restricted to Near/Middle Eastern and the Caucasus, whereas L497 lineages essentially occur in Europe where they likely originated. In contrast, the only U1 representative in Europe is the G-M527 lineage whose distribution pattern is consistent with regions of Greek colonization. No clinal patterns were detected suggesting that the distributions are rather indicative of isolation by distance and demographic complexities.


European Journal of Human Genetics | 2015

The phylogenetic and geographic structure of Y-chromosome haplogroup R1a

Peter A. Underhill; G. David Poznik; Siiri Rootsi; Mari Järve; Alice A. Lin; Jianbin Wang; Ben Passarelli; Jad N. Kanbar; Natalie M. Myres; Roy King; Julie Di Cristofaro; Hovhannes Sahakyan; Doron M. Behar; Alena Kushniarevich; Jelena Šarac; Tena Šarić; Pavao Rudan; Ajai Kumar Pathak; Gyaneshwer Chaubey; Viola Grugni; Ornella Semino; Levon Yepiskoposyan; Ardeshir Bahmanimehr; Shirin Farjadian; Oleg Balanovsky; Elza Khusnutdinova; Rene J. Herrera; Jacques Chiaroni; Carlos Bustamante; Stephen R. Quake

R1a-M420 is one of the most widely spread Y-chromosome haplogroups; however, its substructure within Europe and Asia has remained poorly characterized. Using a panel of 16 244 male subjects from 126 populations sampled across Eurasia, we identified 2923 R1a-M420 Y-chromosomes and analyzed them to a highly granular phylogeographic resolution. Whole Y-chromosome sequence analysis of eight R1a and five R1b individuals suggests a divergence time of ∼25 000 (95% CI: 21 300–29 000) years ago and a coalescence time within R1a-M417 of ∼5800 (95% CI: 4800–6800) years. The spatial frequency distributions of R1a sub-haplogroups conclusively indicate two major groups, one found primarily in Europe and the other confined to Central and South Asia. Beyond the major European versus Asian dichotomy, we describe several younger sub-haplogroups. Based on spatial distributions and diversity patterns within the R1a-M420 clade, particularly rare basal branches detected primarily within Iran and eastern Turkey, we conclude that the initial episodes of haplogroup R1a diversification likely occurred in the vicinity of present-day Iran.


PLOS Genetics | 2015

The Genetic Legacy of the Expansion of Turkic-Speaking Nomads across Eurasia

Bayazit Yunusbayev; Mait Metspalu; Ene Metspalu; Albert Valeev; S. S. Litvinov; Ruslan Valiev; V. L. Akhmetova; Elena Balanovska; Oleg Balanovsky; Shahlo Turdikulova; Dilbar Dalimova; Pagbajabyn Nymadawa; Ardeshir Bahmanimehr; Hovhannes Sahakyan; Kristiina Tambets; Sardana A. Fedorova; Nikolay A. Barashkov; I. M. Khidiyatova; Evelin Mihailov; R. I. Khusainova; Larisa Damba; Miroslava Derenko; B. A. Malyarchuk; Ludmila P. Osipova; M. I. Voevoda; Levon Yepiskoposyan; Toomas Kivisild; Elza Khusnutdinova; Richard Villems

The Turkic peoples represent a diverse collection of ethnic groups defined by the Turkic languages. These groups have dispersed across a vast area, including Siberia, Northwest China, Central Asia, East Europe, the Caucasus, Anatolia, the Middle East, and Afghanistan. The origin and early dispersal history of the Turkic peoples is disputed, with candidates for their ancient homeland ranging from the Transcaspian steppe to Manchuria in Northeast Asia. Previous genetic studies have not identified a clear-cut unifying genetic signal for the Turkic peoples, which lends support for language replacement rather than demic diffusion as the model for the Turkic language’s expansion. We addressed the genetic origin of 373 individuals from 22 Turkic-speaking populations, representing their current geographic range, by analyzing genome-wide high-density genotype data. In agreement with the elite dominance model of language expansion most of the Turkic peoples studied genetically resemble their geographic neighbors. However, western Turkic peoples sampled across West Eurasia shared an excess of long chromosomal tracts that are identical by descent (IBD) with populations from present-day South Siberia and Mongolia (SSM), an area where historians center a series of early Turkic and non-Turkic steppe polities. While SSM matching IBD tracts (> 1cM) are also observed in non-Turkic populations, Turkic peoples demonstrate a higher percentage of such tracts (p-values ≤ 0.01) compared to their non-Turkic neighbors. Finally, we used the ALDER method and inferred admixture dates (~9th–17th centuries) that overlap with the Turkic migrations of the 5th–16th centuries. Thus, our results indicate historical admixture among Turkic peoples, and the recent shared ancestry with modern populations in SSM supports one of the hypothesized homelands for their nomadic Turkic and related Mongolic ancestors.


Human Biology | 2013

No Evidence from Genome-wide Data of a Khazar Origin for the Ashkenazi Jews

Doron M. Behar; Mait Metspalu; Yael Baran; Naama M. Kopelman; Bayazit Yunusbayev; Ariella Gladstein; Shay Tzur; Hovhannes Sahakyan; Ardeshir Bahmanimehr; Levon Yepiskoposyan; Kristiina Tambets; Elza Khusnutdinova; Alena Kushniarevich; Oleg Balanovsky; Elena Balanovsky; Lejla Kovačević; Damir Marjanović; Evelin Mihailov; Anastasia Kouvatsi; Costas Triantaphyllidis; Roy King; Ornella Semino; Antonio Torroni; Michael F. Hammer; Ene Metspalu; Karl Skorecki; Saharon Rosset; Eran Halperin; Richard Villems; Noah A. Rosenberg

Abstract The origin and history of the Ashkenazi Jewish population have long been of great interest, and advances in high-throughput genetic analysis have recently provided a new approach for investigating these topics. We and others have argued on the basis of genome-wide data that the Ashkenazi Jewish population derives its ancestry from a combination of sources tracing to both Europe and the Middle East. It has been claimed, however, through a reanalysis of some of our data, that a large part of the ancestry of the Ashkenazi population originates with the Khazars, a Turkic-speaking group that lived to the north of the Caucasus region ∼1,000 years ago. Because the Khazar population has left no obvious modern descendants that could enable a clear test for a contribution to Ashkenazi Jewish ancestry, the Khazar hypothesis has been difficult to examine using genetics. Furthermore, because only limited genetic data have been available from the Caucasus region, and because these data have been concentrated in populations that are genetically close to populations from the Middle East, the attribution of any signal of Ashkenazi-Caucasus genetic similarity to Khazar ancestry rather than shared ancestral Middle Eastern ancestry has been problematic. Here, through integration of genotypes from newly collected samples with data from several of our past studies, we have assembled the largest data set available to date for assessment of Ashkenazi Jewish genetic origins. This data set contains genome-wide single-nucleotide polymorphisms in 1,774 samples from 106 Jewish and non-Jewish populations that span the possible regions of potential Ashkenazi ancestry: Europe, the Middle East, and the region historically associated with the Khazar Khaganate. The data set includes 261 samples from 15 populations from the Caucasus region and the region directly to its north, samples that have not previously been included alongside Ashkenazi Jewish samples in genomic studies. Employing a variety of standard techniques for the analysis of population-genetic structure, we found that Ashkenazi Jews share the greatest genetic ancestry with other Jewish populations and, among non-Jewish populations, with groups from Europe and the Middle East. No particular similarity of Ashkenazi Jews to populations from the Caucasus is evident, particularly populations that most closely represent the Khazar region. Thus, analysis of Ashkenazi Jews together with a large sample from the region of the Khazar Khaganate corroborates the earlier results that Ashkenazi Jews derive their ancestry primarily from populations of the Middle East and Europe, that they possess considerable shared ancestry with other Jewish populations, and that there is no indication of a significant genetic contribution either from within or from north of the Caucasus region.


Nature Communications | 2013

Phylogenetic applications of whole Y-chromosome sequences and the Near Eastern origin of Ashkenazi Levites

Siiri Rootsi; Doron M. Behar; Mari Järve; Alice A. Lin; Natalie M. Myres; Ben Passarelli; G. David Poznik; Shay Tzur; Hovhannes Sahakyan; Ajai Kumar Pathak; Saharon Rosset; Mait Metspalu; Viola Grugni; Ornella Semino; Ene Metspalu; Carlos Bustamante; Karl Skorecki; Richard Villems; Toomas Kivisild; Peter A. Underhill

Previous Y-chromosome studies have demonstrated that Ashkenazi Levites, members of a paternally inherited Jewish priestly caste, display a distinctive founder event within R1a, the most prevalent Y-chromosome haplogroup in Eastern Europe. Here we report the analysis of 16 whole R1 sequences and show that a set of 19 unique nucleotide substitutions defines the Ashkenazi R1a lineage. While our survey of one of these, M582, in 2,834 R1a samples reveals its absence in 922 Eastern Europeans, we show it is present in all sampled R1a Ashkenazi Levites, as well as in 33.8% of other R1a Ashkenazi Jewish males and 5.9% of 303 R1a Near Eastern males, where it shows considerably higher diversity. Moreover, the M582 lineage also occurs at low frequencies in non-Ashkenazi Jewish populations. In contrast to the previously suggested Eastern European origin for Ashkenazi Levites, the current data are indicative of a geographic source of the Levite founder lineage in the Near East and its likely presence among pre-Diaspora Hebrews.

Collaboration


Dive into the Hovhannes Sahakyan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Levon Yepiskoposyan

National Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Doron M. Behar

Rambam Health Care Campus

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bayazit Yunusbayev

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Elza Khusnutdinova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge