Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Howard Bussey is active.

Publication


Featured researches published by Howard Bussey.


Science | 1996

Life with 6000 Genes

André Goffeau; Bart Barrell; Howard Bussey; Ronald W. Davis; Bernard Dujon; H. Feldmann; Francis Galibert; J D Hoheisel; Claude Jacq; Mark Johnston; Edward J. Louis; Hans-Werner Mewes; Yasufumi Murakami; Peter Philippsen; H Tettelin; Stephen G. Oliver

The genome of the yeast Saccharomyces cerevisiae has been completely sequenced through a worldwide collaboration. The sequence of 12,068 kilobases defines 5885 potential protein-encoding genes, approximately 140 genes specifying ribosomal RNA, 40 genes for small nuclear RNA molecules, and 275 transfer RNA genes. In addition, the complete sequence provides information about the higher order organization of yeasts 16 chromosomes and allows some insight into their evolutionary history. The genome shows a considerable amount of apparent genetic redundancy, and one of the major problems to be tackled during the next stage of the yeast genome project is to elucidate the biological functions of all of these genes.


Science | 2010

The Genetic Landscape of a Cell

Michael Costanzo; Anastasia Baryshnikova; Jeremy Bellay; Yungil Kim; Eric D. Spear; Carolyn S. Sevier; Huiming Ding; Judice L. Y. Koh; Kiana Toufighi; Jeany Prinz; Robert P. St.Onge; Benjamin VanderSluis; Taras Makhnevych; Franco J. Vizeacoumar; Solmaz Alizadeh; Sondra Bahr; Renee L. Brost; Yiqun Chen; Murat Cokol; Raamesh Deshpande; Zhijian Li; Zhen Yuan Lin; Wendy Liang; Michaela Marback; Jadine Paw; Bryan Joseph San Luis; Ermira Shuteriqi; Amy Hin Yan Tong; Nydia Van Dyk; Iain M. Wallace

Making Connections Genetic interaction profiles highlight cross-connections between bioprocesses, providing a global view of cellular pleiotropy, and enable the prediction of genetic network hubs. Costanzo et al. (p. 425) performed a pairwise fitness screen covering approximately one-third of all potential genetic interactions in yeast, examining 5.4 million gene-gene pairs and generating quantitative profiles for ∼75% of the genome. Of the pairwise interactions tested, about 3% of the genes investigated interact under the conditions tested. On the basis of these data, a reference map for the yeast genetic network was created. A genome-wide interaction map of yeast identifies genetic interactions, networks, and function. A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for ~75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function. The global network identifies functional cross-connections between all bioprocesses, mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a number of different gene attributes, which may be informative about genetic network hubs in other organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape provides a key for interpretation of chemical-genetic interactions and drug target identification.


Science | 2008

An in Vivo Map of the Yeast Protein Interactome

Kirill Tarassov; Vincent Messier; Christian R. Landry; Stevo Radinovic; Mercedes M. Serna Molina; Igor Shames; Yelena Malitskaya; Jackie Vogel; Howard Bussey; Stephen W. Michnick

Protein interactions regulate the systems-level behavior of cells; thus, deciphering the structure and dynamics of protein interaction networks in their cellular context is a central goal in biology. We have performed a genome-wide in vivo screen for protein-protein interactions in Saccharomyces cerevisiae by means of a protein-fragment complementation assay (PCA). We identified 2770 interactions among 1124 endogenously expressed proteins. Comparison with previous studies confirmed known interactions, but most were not known, revealing a previously unexplored subspace of the yeast protein interactome. The PCA detected structural and topological relationships between proteins, providing an 8-nanometer–resolution map of dynamically interacting complexes in vivo and extended networks that provide insights into fundamental cellular processes, including cell polarization and autophagy, pathways that are evolutionarily conserved and central to both development and human health.


Microbiology and Molecular Biology Reviews | 2006

Cell Wall Assembly in Saccharomyces cerevisiae

Guillaume Lesage; Howard Bussey

SUMMARY An extracellular matrix composed of a layered meshwork of β-glucans, chitin, and mannoproteins encapsulates cells of the yeast Saccharomyces cerevisiae. This organelle determines cellular morphology and plays a critical role in maintaining cell integrity during cell growth and division, under stress conditions, upon cell fusion in mating, and in the durable ascospore cell wall. Here we assess recent progress in understanding the molecular biology and biochemistry of cell wall synthesis and its remodeling in S. cerevisiae. We then review the regulatory dynamics of cell wall assembly, an area where functional genomics offers new insights into the integration of cell wall growth and morphogenesis with a polarized secretory system that is under cell cycle and cell type program controls.


Nature Reviews Genetics | 2007

Exploring genetic interactions and networks with yeast

Charles Boone; Howard Bussey; Brenda Andrews

The development and application of genetic tools and resources has enabled a partial genetic-interaction network for the yeast Saccharomyces cerevisiae to be compiled. Analysis of the network, which is ongoing, has already provided a clear picture of the nature and scale of the genetic interactions that robustly sustain biological systems, and how cellular buffering is achieved at the molecular level. Recent studies in yeast have begun to define general principles of genetic networks, and also pave the way for similar studies in metazoan model systems. A comparative understanding of genetic-interaction networks promises insights into some long-standing genetic problems, such as the nature of quantitative traits and the basis of complex inherited disease.


PLOS Genetics | 2008

Genomic Islands in the Pathogenic Filamentous Fungus Aspergillus fumigatus

Natalie D. Fedorova; Nora Khaldi; Vinita Joardar; Rama Maiti; Paolo Amedeo; Michael J. Anderson; Jonathan Crabtree; Joana C. Silva; Jonathan H. Badger; Ahmed Abdulrahman Albarraq; Sam Angiuoli; Howard Bussey; Paul Bowyer; Peter J. Cotty; Paul S. Dyer; Amy Egan; Kevin Galens; Claire M. Fraser-Liggett; Brian J. Haas; Jason M. Inman; Richard Kent; Sébastien Lemieux; Iran Malavazi; Joshua Orvis; Terry Roemer; Catherine M. Ronning; Jaideep Sundaram; Granger Sutton; Geoff Turner; J. Craig Venter

We present the genome sequences of a new clinical isolate of the important human pathogen, Aspergillus fumigatus, A1163, and two closely related but rarely pathogenic species, Neosartorya fischeri NRRL181 and Aspergillus clavatus NRRL1. Comparative genomic analysis of A1163 with the recently sequenced A. fumigatus isolate Af293 has identified core, variable and up to 2% unique genes in each genome. While the core genes are 99.8% identical at the nucleotide level, identity for variable genes can be as low 40%. The most divergent loci appear to contain heterokaryon incompatibility (het) genes associated with fungal programmed cell death such as developmental regulator rosA. Cross-species comparison has revealed that 8.5%, 13.5% and 12.6%, respectively, of A. fumigatus, N. fischeri and A. clavatus genes are species-specific. These genes are significantly smaller in size than core genes, contain fewer exons and exhibit a subtelomeric bias. Most of them cluster together in 13 chromosomal islands, which are enriched for pseudogenes, transposons and other repetitive elements. At least 20% of A. fumigatus-specific genes appear to be functional and involved in carbohydrate and chitin catabolism, transport, detoxification, secondary metabolism and other functions that may facilitate the adaptation to heterogeneous environments such as soil or a mammalian host. Contrary to what was suggested previously, their origin cannot be attributed to horizontal gene transfer (HGT), but instead is likely to involve duplication, diversification and differential gene loss (DDL). The role of duplication in the origin of lineage-specific genes is further underlined by the discovery of genomic islands that seem to function as designated “gene dumps” and, perhaps, simultaneously, as “gene factories”.


Molecular Microbiology | 2003

Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery

Terry Roemer; Bo Jiang; John Davison; Troy Ketela; Karynn Veillette; Anouk Breton; Fatou Tandia; Annie Linteau; Susan Sillaots; Catarina Marta; Nick Martel; Steeve Veronneau; Sébastien Lemieux; Sarah Kauffman; Jeff Becker; Reginald Storms; Charles Boone; Howard Bussey

Candida albicans is the primary fungal pathogen of humans. Despite the need for novel drugs to combat fungal infections [Sobel, J.D. (2000) Clin Infectious Dis 30: 652], antifungal drug discovery is currently limited by both the availability of suitable drug targets and assays to screen corresponding targets. A functional genomics approach based on the diploid C. albicans genome sequence, termed GRACETM (gene replacement and conditional expression), was used to assess gene essentiality through a combination of gene replacement and conditional gene expression. In a systematic application of this approach, we identify 567 essential genes in C. albicans. Interestingly, evaluating the conditional phenotype of all identifiable C. albicans homologues of the Saccharomyces cerevisiae essential gene set [Giaever, G., Chu, A.M., Ni, L., Connelly, C., Riles, L., Veronneau, S., et al. (2002) Nature 418: 387–391] by GRACE revealed only 61% to be essential in C. albicans, emphasizing the importance of performing such studies directly within the pathogen. Construction of this conditional mutant strain collection facilitates large‐scale examination of terminal phenotypes of essential genes. This information enables preferred drug targets to be selected from the C. albicans essential gene set by phenotypic information derived both in vitro, such as cidal versus static terminal phenotypes, as well as in vivo through virulence studies using conditional strains in an animal model of infection. In addition, the combination of phenotypic and bioinformatic analyses further improves drug target selection from the C. albicans essential gene set, and their respective conditional mutant strains may be directly used as sensitive whole‐cell assays for drug screening.


Cell | 1984

Sequence of the preprotoxin dsRNA gene of type I killer yeast: Multiple processing events produce a two-component toxin

Keith A. Bostian; Quentin Elliott; Howard Bussey; Virginia Bum; A.I. Smith; Donald J. Tipper

The preprotoxin gene of the 1.9 kb M1 dsRNA genome from type I killer yeast has been sequenced employing a partial-length cDNA derived from an in vivo transcript. A single open reading frame, commencing with AUG at M1 dsRNA bases 14-16, terminates with UAG at 963-965 and codes for a 316 amino acid protein, believed to be identical to the 34 kd preprotoxin species, M1-P1, synthesized by in vitro translation of denatured M1 dsRNA. N-terminal sequencing of M1-P1 confirms this prediction. Secreted toxin is shown to consist of two dissimilar, disulfide-bonded subunits, alpha and beta, of apparent size 9.5 and 9.0 kd, respectively, whose N-terminal sequences are also found in the predicted preprotoxin sequence. Its proposed domains consist of delta, a 44 amino acid N-terminal segment, followed by alpha and beta, which are separated by gamma, a large central glycosylated segment. Processing sites, domain functions, and the potential role of gamma in immunity are discussed.


Molecular Microbiology | 2002

β‐1,6‐Glucan synthesis in Saccharomyces cerevisiae

Serge Shahinian; Howard Bussey

β‐1,6‐Glucan is an essential fungal‐specific component of the Saccharomyces cerevisiae cell wall that interconnects all other wall components into a lattice. Considerable biochemical and genetic effort has been directed at the identification and characterization of the steps involved in its biosynthesis. Structural studies show that the polymer plays a central role in wall structure, attaching mannoproteins via their glycosylphosphatidylinositol (GPI) glycan remnant to β‐1,3‐glucan and chitin. Genetic approaches have identified genes that upon disruption result in β‐1,6‐glucan defects of varying severity, often with reduced growth or lethality. These gene products have been localized throughout the secretory pathway and at the cell surface, suggesting a possible biosynthetic route. Current structural and genetic data have therefore allowed the development of models to predict biosynthetic events. Based on knowledge of β‐1,3‐glucan and chitin synthesis, it is likely that the bulk of β‐1,6‐glucan polymer synthesis occurs at the cell surface, but requires key prior intracellular events. However, the activity of most of the identified gene products remain unknown, making it unclear to what extent and how directly they contribute to the synthesis of this polymer. With the recent availability of new tools, reagents and methods (including genomics), the field is poised for a convergence of biochemical and genetic methods to identify and characterize the biochemical steps in the synthesis of this polymer.


Genetics | 2004

Analysis of beta-1,3-glucan assembly in Saccharomyces cerevisiae using a synthetic interaction network and altered sensitivity to caspofungin.

Guillaume Lesage; Anne-Marie Sdicu; Patrice Ménard; Jesse Shapiro; Shamiza Hussein; Howard Bussey

Large-scale screening of genetic and chemical-genetic interactions was used to examine the assembly and regulation of β-1,3-glucan in Saccharomyces cerevisiae. Using the set of deletion mutants in ∼4600 nonessential genes, we scored synthetic interactions with genes encoding subunits of the β-1,3-glucan synthase (FKS1, FKS2), the glucan synthesis regulator (SMI1/KNR4), and a β-1,3-glucanosyltransferase (GAS1). In the resulting network, FKS1, FKS2, GAS1, and SMI1 are connected to 135 genes in 195 interactions, with 26 of these genes also interacting with CHS3 encoding chitin synthase III. A network core of 51 genes is multiply connected with 112 interactions. Thirty-two of these core genes are known to be involved in cell wall assembly and polarized growth, and 8 genes of unknown function are candidates for involvement in these processes. In parallel, we screened the yeast deletion mutant collection for altered sensitivity to the glucan synthase inhibitor, caspofungin. Deletions in 52 genes led to caspofungin hypersensitivity and those in 39 genes to resistance. Integration of the glucan interaction network with the caspofungin data indicates an overlapping set of genes involved in FKS2 regulation, compensatory chitin synthesis, protein mannosylation, and the PKC1-dependent cell integrity pathway.

Collaboration


Dive into the Howard Bussey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David B. Kaback

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge