Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Howard H. Chang is active.

Publication


Featured researches published by Howard H. Chang.


Environmental Science & Technology | 2015

Reactive Oxygen Species Generation Linked to Sources of Atmospheric Particulate Matter and Cardiorespiratory Effects.

Josephine T. Bates; Rodney J. Weber; Joseph Abrams; Vishal Verma; Ting Fang; Mitchel Klein; Matthew J. Strickland; Stefanie Ebelt Sarnat; Howard H. Chang; James A. Mulholland; Paige E. Tolbert; Armistead G. Russell

Exposure to atmospheric fine particulate matter (PM2.5) is associated with cardiorespiratory morbidity and mortality, but the mechanisms are not well understood. We assess the hypothesis that PM2.5 induces oxidative stress in the body via catalytic generation of reactive oxygen species (ROS). A dithiothreitol (DTT) assay was used to measure the ROS-generation potential of water-soluble PM2.5. Source apportionment on ambient (Atlanta, GA) PM2.5 was performed using the chemical mass balance method with ensemble-averaged source impact profiles. Linear regression analysis was used to relate PM2.5 emission sources to ROS-generation potential and to estimate historical levels of DTT activity for use in an epidemiologic analysis for the period of 1998-2009. Light-duty gasoline vehicles (LDGV) exhibited the highest intrinsic DTT activity, followed by biomass burning (BURN) and heavy-duty diesel vehicles (HDDV) (0.11 ± 0.02, 0.069 ± 0.02, and 0.052 ± 0.01 nmol min(-1) μg(-1)source, respectively). BURN contributed the largest fraction to total DTT activity over the study period, followed by LDGV and HDDV (45, 20, and 14%, respectively). DTT activity was more strongly associated with emergency department visits for asthma/wheezing and congestive heart failure than PM2.5. This work provides further epidemiologic evidence of a biologically plausible mechanism, that of oxidative stress, for associations of adverse health outcomes with PM2.5 mass and supports continued assessment of the utility of the DTT activity assay as a measure of ROS-generating potential of particles.


American Journal of Epidemiology | 2012

Time-to-Event Analysis of Fine Particle Air Pollution and Preterm Birth: Results From North Carolina, 2001–2005

Howard H. Chang; Brian J. Reich; Marie Lynn Miranda

Exposure to air pollution during pregnancy has been suggested to be a risk factor for preterm birth; however, epidemiologic evidence remains mixed and limited. The authors examined the association between ambient levels of particulate matter <2.5 μm in aerodynamic diameter (PM(2.5)) and the risk of preterm birth in North Carolina during the period 2001-2005. They estimated the risks of cumulative and lagged average exposures to PM(2.5) during pregnancy via a 2-stage discrete-time survival model. The authors also considered exposure metrics derived from 1) ambient concentrations measured by the Air Quality System (AQS) monitoring network and 2) concentrations predicted by statistically fusing AQS data with process-based numerical model output (the Statistically Fused Air and Deposition Surfaces (FSD) database). Using the AQS measurements, an interquartile-range (1.73 μg/m(3)) increase in cumulative PM(2.5) exposure was associated with a 6.8% (95% posterior interval: 0.5, 13.6) increase in the risk of preterm birth. Using the FSD-predicted levels and accounting for prediction error, the authors also found significant adverse associations between trimester 1, trimester 2, and cumulative PM(2.5) exposure and preterm birth. These findings suggest that exposure to ambient PM(2.5) during pregnancy is associated with increased risk of preterm birth, even in a region characterized by relatively good air quality.


International Journal of Environmental Research and Public Health | 2010

Impact of Climate Change on Ambient Ozone Level and Mortality in Southeastern United States

Howard H. Chang; Jingwen Zhou; Montserrat Fuentes

There is a growing interest in quantifying the health impacts of climate change. This paper examines the risks of future ozone levels on non-accidental mortality across 19 urban communities in Southeastern United States. We present a modeling framework that integrates data from climate model outputs, historical meteorology and ozone observations, and a health surveillance database. We first modeled present-day relationships between observed maximum daily 8-hour average ozone concentrations and meteorology measured during the year 2000. Future ozone concentrations for the period 2041 to 2050 were then projected using calibrated climate model output data from the North American Regional Climate Change Assessment Program. Daily community-level mortality counts for the period 1987 to 2000 were obtained from the National Mortality, Morbidity and Air Pollution Study. Controlling for temperature, dew-point temperature, and seasonality, relative risks associated with short-term exposure to ambient ozone during the summer months were estimated using a multi-site time series design. We estimated an increase of 0.43 ppb (95% PI: 0.14–0.75) in average ozone concentration during the 2040’s compared to 2000 due to climate change alone. This corresponds to a 0.01% increase in mortality rate and 45.2 (95% PI: 3.26–87.1) premature deaths in the study communities attributable to the increase in future ozone level.


Journal of Exposure Science and Environmental Epidemiology | 2013

Application of alternative spatiotemporal metrics of ambient air pollution exposure in a time-series epidemiological study in Atlanta.

Stefanie Ebelt Sarnat; Jeremy A. Sarnat; James A. Mulholland; Vlad Isakov; Halûk Özkaynak; Howard H. Chang; Mitchel Klein; Paige E. Tolbert

Exposure error in studies of ambient air pollution and health that use city-wide measures of exposure may be substantial for pollutants that exhibit spatiotemporal variability. Alternative spatiotemporal metrics of exposure for traffic-related and regional pollutants were applied in a time-series study of ambient air pollution and cardiorespiratory emergency department visits in Atlanta, GA, USA. Exposure metrics included daily central site monitoring for particles and gases; daily spatially refined ambient concentrations obtained from regional background monitors, local-scale dispersion, and hybrid air quality models; and spatially refined ambient exposures from population exposure models. Health risk estimates from Poisson models using the different exposure metrics were compared. We observed stronger associations, particularly for traffic-related pollutants, when using spatially refined ambient concentrations compared with a conventional central site exposure assignment approach. For some relationships, estimates of spatially refined ambient population exposures showed slightly stronger associations than corresponding spatially refined ambient concentrations. Using spatially refined pollutant metrics, we identified socioeconomic disparities in concentration–response functions that were not observed when using central site data. In some cases, spatially refined pollutant metrics identified associations with health that were not observed using measurements from the central site. Complexity and challenges in incorporating modeled pollutant estimates in time-series studies are discussed.


Environmental Science & Technology | 2016

Method for Fusing Observational Data and Chemical Transport Model Simulations To Estimate Spatiotemporally Resolved Ambient Air Pollution

Mariel D. Friberg; Xinxin Zhai; Heather A. Holmes; Howard H. Chang; Matthew J. Strickland; Stefanie Ebelt Sarnat; Paige E. Tolbert; Armistead G. Russell; James A. Mulholland

Investigations of ambient air pollution health effects rely on complete and accurate spatiotemporal air pollutant estimates. Three methods are developed for fusing ambient monitor measurements and 12 km resolution chemical transport model (CMAQ) simulations to estimate daily air pollutant concentrations across Georgia. Temporal variance is determined by observations in one method, with the annual mean CMAQ field providing spatial structure. A second method involves scaling daily CMAQ simulated fields using mean observations to reduce bias. Finally, a weighted average of these results based on prediction of temporal variance provides optimized daily estimates for each 12 × 12 km grid. These methods were applied to daily metrics of 12 pollutants (CO, NO2, NOx, O3, SO2, PM10, PM2.5, and five PM2.5 components) over the state of Georgia for a seven-year period (2002-2008). Cross-validation demonstrates a wide range in optimized model performance across pollutants, with SO2 predicted most poorly due to limitations in coal combustion plume monitoring and modeling. For the other pollutants studied, 54-88% of the spatiotemporal variance (Pearson R(2) from cross-validation) was captured, with ozone and PM2.5 predicted best. The optimized fusion approach developed provides daily spatial field estimates of air pollutant concentrations and uncertainties that are consistent with observations, emissions, and meteorology.


Journal of Exposure Science and Environmental Epidemiology | 2013

Proximity to roadways and pregnancy outcomes

Marie Lynn Miranda; Sharon E. Edwards; Howard H. Chang; Richard L Auten

Adverse birth outcomes are associated with exposure to air pollution during pregnancy. Road proximity is a simple, widely available metric for capturing local variation in exposure to traffic-related air pollution. We characterized maternal exposure to traffic-related air pollution during pregnancy using residential proximity to major roadways among 2004–2008 singleton births in NC. Controlling for maternal race, age, education, nativity, marital status, and tobacco use, and season of birth, parity, infant sex, and Census tract-level urbanization and income, we evaluated the association between road proximity and pregnancy outcomes using generalized linear mixed models with a random intercept for each Census tract. Birth weight, birth weight percentile for gestational age, gestational hypertension, and small-for-gestational age were not associated with road proximity; however, women residing within 250 m of a major roadway were at 3–5% increased odds of low birth weight, preterm birth, and late preterm birth compared with women residing beyond 250 m (P<0.05). Our analyses demonstrate an association between proximity to major roadways and pregnancy outcomes using a large sample. Road proximity may represent a relatively straightforward method for assessing maternal risk from exposure to traffic-related air pollution, with results offering guidance for studies that can more accurately characterize air pollution exposures.


Journal of Exposure Science and Environmental Epidemiology | 2014

Calibrating MODIS aerosol optical depth for predicting daily PM2.5 concentrations via statistical downscaling

Howard H. Chang; Xuefei Hu; Yang Liu

There has been a growing interest in the use of satellite-retrieved aerosol optical depth (AOD) to estimate ambient concentrations of PM2.5 (particulate matter <2.5 μm in aerodynamic diameter). With their broad spatial coverage, satellite data can increase the spatial–temporal availability of air quality data beyond ground monitoring measurements and potentially improve exposure assessment for population-based health studies. This paper describes a statistical downscaling approach that brings together (1) recent advances in PM2.5 land use regression models utilizing AOD and (2) statistical data fusion techniques for combining air quality data sets that have different spatial resolutions. Statistical downscaling assumes the associations between AOD and PM2.5 concentrations to be spatially and temporally dependent and offers two key advantages. First, it enables us to use gridded AOD data to predict PM2.5 concentrations at spatial point locations. Second, the unified hierarchical framework provides straightforward uncertainty quantification in the predicted PM2.5 concentrations. The proposed methodology is applied to a data set of daily AOD values in southeastern United States during the period 2003–2005. Via cross-validation experiments, our model had an out-of-sample prediction R2 of 0.78 and a root mean-squared error (RMSE) of 3.61 μg/m3 between observed and predicted daily PM2.5 concentrations. This corresponds to a 10% decrease in RMSE compared with the same land use regression model without AOD as a predictor. Prediction performances of spatial–temporal interpolations to locations and on days without monitoring PM2.5 measurements were also examined.


Environmental Science & Technology | 2013

Bayesian-based ensemble source apportionment of PM2.5.

Sivaraman Balachandran; Howard H. Chang; Jorge E. Pachon; Heather A. Holmes; James A. Mulholland; Armistead G. Russell

A Bayesian source apportionment (SA) method is developed to provide source impact estimates and associated uncertainties. Bayesian-based ensemble averaging of multiple models provides new source profiles for use in a chemical mass balance (CMB) SA of fine particulate matter (PM2.5). The approach estimates source impacts and their uncertainties by using a short-term application of four individual SA methods: three receptor-based models and one chemical transport model. The method is used to estimate two seasonal distributions of source profiles that are used in SA for a long-term PM2.5 data set. For each day in a long-term PM2.5 data set, 10 source profiles are sampled from these distributions and used in a CMB application, resulting in 10 SA results for each day. This formulation results in a distribution of daily source impacts rather than a single value. The average and standard deviation of the distribution are used as the final estimate of source impact and a measure of uncertainty, respectively. The Bayesian-based source impacts for biomass burning correlate better with observed levoglucosan (R(2) = 0.66) and water-soluble potassium (R(2) = 0.63) than source impacts estimated using more traditional methods and more closely agrees with observed total mass. The Bayesian approach also captures the expected seasonal variation of biomass burning and secondary impacts and results in fewer days with sources having zero impact. Sensitivity analysis found that using non-informative prior weighting performed better than using weighting based on method-derived uncertainties. This approach can be applied to long-term data sets from speciation network sites of the United States Environmental Protection Agency (U.S. EPA). In addition to providing results that are more consistent with independent observations and known emission sources being present, the distributions of source impacts can be used in epidemiologic analyses to estimate uncertainties associated with the SA results.


Environmental Science & Technology | 2016

Improving the Accuracy of Daily PM2.5 Distributions Derived from the Fusion of Ground-Level Measurements with Aerosol Optical Depth Observations, a Case Study in North China

Baolei Lv; Yongtao Hu; Howard H. Chang; Armistead G. Russell; Yuqi Bai

The accuracy in estimated fine particulate matter concentrations (PM2.5), obtained by fusing of station-based measurements and satellite-based aerosol optical depth (AOD), is often reduced without accounting for the spatial and temporal variations in PM2.5 and missing AOD observations. In this study, a city-specific linear regression model was first developed to fill in missing AOD data. A novel interpolation-based variable, PM2.5 spatial interpolator (PMSI2.5), was also introduced to account for the spatial dependence in PM2.5 across grid cells. A Bayesian hierarchical model was then developed to estimate spatiotemporal relationships between AOD and PM2.5. These methods were evaluated through a city-specific 10-fold cross-validation procedure in a case study in North China in 2014. The cross validation R(2) was 0.61 when PMSI2.5 was included and 0.48 when PMSI2.5 was excluded. The gap-filled AOD values also effectively improved predicted PM2.5 concentrations with an R(2) = 0.78. Daily ground-level PM2.5 concentration fields at a 12 km resolution were predicted with complete spatial and temporal coverage. This study also indicates that model prediction performance should be assessed by accounting for monitor clustering due to the potential misinterpretation of model accuracy in spatial prediction when validation monitors are randomly selected.


Journal of Exposure Science and Environmental Epidemiology | 2016

Ambient air pollution and emergency department visits for asthma: a multi-city assessment of effect modification by age.

Brooke A Alhanti; Howard H. Chang; Andrea Winquist; James A. Mulholland; Lyndsey A. Darrow; Stefanie Ebelt Sarnat

Previous studies have found strong associations between asthma morbidity and major ambient air pollutants. Relatively little research has been conducted to assess whether age is a factor conferring susceptibility to air pollution-related asthma morbidity. We investigated the short-term relationships between asthma emergency department (ED) visits and ambient ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and fine particulate matter (PM2.5) in Atlanta (1993–2009), Dallas (2006–2009), and St. Louis (2001–2007). City-specific daily time-series analyses were conducted to estimate associations by age group (0–4, 5–18, 19–39, 40–64, and 65+ years). Sub-analyses were performed stratified by race and sex. City-specific rate ratios (RRs) were combined by inverse-variance weighting to provide an overall association for each strata. The overall RRs differed across age groups, with associations for all pollutants consistently strongest for children aged 5–18 years. The patterns of association across age groups remained generally consistent when models were stratified by sex and race, although the strong observed associations among 5–18 year olds appeared to be partially driven by non-white and male patients. Our findings suggest that age is a susceptibility factor for asthma exacerbations in response to air pollution, with school-age children having the highest susceptibility.

Collaboration


Dive into the Howard H. Chang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

James A. Mulholland

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Armistead G. Russell

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rodney J. Weber

Georgia Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge