Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Howard J. Cooke is active.

Publication


Featured researches published by Howard J. Cooke.


Nature | 1997

The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis.

Matteo Ruggiu; Robert Speed; Mary Taggart; Stewart J. McKay; Fiona Kilanowski; Philippa T. K. Saunders; Julia R. Dorin; Howard J. Cooke

RBM and DAZ/SPGY are two families of genes located on the Y chromosome that encode proteins containing RNA-binding motifs, and both have been described as candidate human spermatogenesis genes. Transmission of deletions from father to son has been observed in the case of DAZ, but neither gene family has been shown to be essential for spermatogenesis in human males. The DAZ/SPGY genes are particularly amenable to a knockout approach, as they are found on the Y chromosome in Old World primates and apes, but in other mammals, they are represented only by an autosomal gene, DAZLA, which is also present in Old World primates and apes. It has also been shown that a Dazla homologue is essential for spermatogenesis in Drosophila. Here we show that Dazla protein is cytoplasmic in male and female germ cells, unlike the nuclear RBM protein. Disruption of the Dazla gene leads to loss of germ cells and complete absence of gamete production, demonstrating that Dazla is essential for the differentiation of germ cells.


Cell | 1993

A Y chromosome gene family with RNA-binding protein homology : Candidates for the azoospermia factor AZF controlling human spermatogenesis

Kun Ma; John D. Inglis; Andrew Sharkey; Wendy A. Bickmore; Robert E. Hill; E.Jane Prosser; Robert Speed; Eric J. Thomson; Mark A. Jobling; Kay Taylor; Jonathan Wolfe; Howard J. Cooke; Timothy B. Hargreave; Ann C. Chandley

We have previously mapped the human azoospermia factor to a deletion in Y chromosome interval 6 (subinterval XII-XIV). We now report the isolation and characterization of a gene family located within this deletion. Analysis of the predicted protein products suggests a possible role in RNA processing or translational control during early spermatogenesis. The Y chromosome RNA recognition motif (YRRM) family includes a minimum of three members expressed specifically in the testis. Interphase in situ results and Southern blot analysis indicate that several further YRRM sequences map within interval 6. Several mammalian species show Y chromosome conservation of YRRM sequences. We have detected deletions of YRRM sequences in two oligospermic patients with no previously detectable mutation.


Mutation Research\/dnaging | 1991

In vivo loss of telomeric repeats with age in humans

Janet C. Lindsey; Niolette I. McGill; Leon A. Lindsey; Daryll K. Green; Howard J. Cooke

Telomeric DNA in the skin cells of 21 human subjects aged between 0 and 92 years was quantified by determining the length of the telomeric smear and the relative amount of TTAGGG repeat sequences. Both telomere length and quantity of telomeric repeat sequences were found to decrease significantly with age. Telomere loss has previously been postulated to be a caused of cell senescence.


Nature Biotechnology | 1998

Construction of YAC-based mammalian artificial chromosomes

Masashi Ikeno; Brenda R. Grimes; Tuneko Okazaki; Megumi Nakano; Kaori Saitoh; Harumi Hoshino; Niolette I. McGill; Howard J. Cooke; Hiroshi Masumoto

To construct a mammalian artificial chromosome (MAC), telomere repeats and selectable markers were introduced into a 100 kb yeast artificial chromosome (YAC) containing human centromeric DNA. This YAC, which has a regular repeat structure of alpha-satellite DNA and centromere protein B (CENP-B) boxes, efficiently formed MACs that segregated accurately and bound CENP-B, CENP-C, and CENP-E. The MACs appear to be about 1–5 Mb in size and contain YAC multimers. Structural analyses suggest that the MACs have not acquired host sequences and were formed by a de novo mechanism. The accurate segregation of the MACs suggests they have potential as vectors for introducing genes into mammals.


Human Genetics | 1985

An estimate of unique DNA sequence heterozygosity in the human genome

David Neil Cooper; Howard J. Cooke; Susanne Niemann; J. Schmidtke

SummaryFifteen different restriction fragment length polymorphisms (RFLPs) were detected in the human genome using 19 cloned DNA segments, derived from flow-sorted metaphase chromosomes or total genomic DNA, as hybridization probes. Since these clones were selected at random with respect to their coding potential, their analysis permitted an unbiassed estimate of single-copy DNA sequence heterozygosity in the human genome. Since our estimate (h=0.0037) is an order of magnitude higher than previous estimates derived from protein data, most of the polymorphic variation present in the genome must occur in non-coding sequences. In addition, it was confirmed that enzymes containing the dinucleotide CpG in their recognition sequence detect more polymorphic variation than those that do not contain CpG.


Nature Reviews Genetics | 2002

Mouse models of male infertility

Howard J. Cooke; Philippa T. K. Saunders

Spermatogenesis is a complex process that involves stem-cell renewal, genome reorganization and genome repackaging, and that culminates in the production of motile gametes. Problems at all stages of spermatogenesis contribute to human infertility, but few of them can be modelled in vitro or in cell culture. Targeted mutagenesis in the mouse provides a powerful method to analyse these steps and has provided new insights into the origins of male infertility.


The EMBO Journal | 2005

The DAZL family proteins are PABP‐binding proteins that regulate translation in germ cells

Brian Collier; Barbara Gorgoni; Carolyn Loveridge; Howard J. Cooke; Nicola K. Gray

DAZL proteins are germ‐cell‐specific RNA‐binding proteins essential for gametogenesis. The precise molecular role of these proteins in germ‐cell development remains enigmatic; however, they appear to function in the cytoplasm. In order to directly address the function of vertebrate DAZL proteins, we have used Xenopus laevis oocytes as a model system. Here we demonstrate that members of this family, including Xdazl, mouse Dazl, human DAZL, human DAZ and human BOULE, have the ability to stimulate translation and function at the level of translation initiation. We show that DAZL proteins interact with poly(A)‐binding proteins (PABPs), which are critical for the initiation of translation. Mapping and tethered function experiments suggest that these interactions are physiologically important. This leads to an attractive hypothesis whereby DAZL proteins activate translationally silent mRNAs during germ cell development through the direct recruitment of PABPs.


Biology of Reproduction | 2000

DAZ Family Proteins Exist Throughout Male Germ Cell Development and Transit from Nucleus to Cytoplasm at Meiosis in Humans and Mice

Renee Reijo; David M. Dorfman; Roger Slee; Andrew A. Renshaw; Kevin R. Loughlin; Howard J. Cooke; David C. Page

Abstract The human DAZ gene family is expressed in germ cells and consists of a cluster of nearly identical DAZ (deleted in azoospermia) genes on the Y chromosome and an autosomal homolog, DAZL (DAZ-like). Only the autosomal gene is found in mice. Y-chromosome deletions that encompass the DAZ genes are a common cause of spermatogenic failure in men, and autosomal homologs of DAZ are essential for testicular germ cell development in mice and Drosophila. Previous studies have reported that mouse DAZL protein is strictly cytoplasmic and that human DAZ protein is restricted to postmeiotic cells. By contrast, we report here that human DAZ and human and mouse DAZL proteins are present in both the nuclei and cytoplasm of fetal gonocytes and in spermatogonial nuclei. The proteins relocate to the cytoplasm during male meiosis. Further observations using human tissues indicate that, unlike DAZ, human DAZL protein persists in spermatids and even spermatozoa. These results, combined with findings in diverse species, suggest that DAZ family proteins function in multiple cellular compartments at multiple points in male germ cell development. They may act during meiosis and much earlier, when spermatogonial stem cell populations are established.


PLOS Genetics | 2009

Mouse HORMAD1 and HORMAD2, Two Conserved Meiotic Chromosomal Proteins, Are Depleted from Synapsed Chromosome Axes with the Help of TRIP13 AAA-ATPase

Lukasz Wojtasz; Katrin Daniel; Ignasi Roig; Ewelina Bolcun-Filas; Huiling Xu; Verawan Boonsanay; Christian R. Eckmann; Howard J. Cooke; Maria Jasin; Scott Keeney; Michael J. McKay; Attila Toth

Meiotic crossovers are produced when programmed double-strand breaks (DSBs) are repaired by recombination from homologous chromosomes (homologues). In a wide variety of organisms, meiotic HORMA-domain proteins are required to direct DSB repair towards homologues. This inter-homologue bias is required for efficient homology search, homologue alignment, and crossover formation. HORMA-domain proteins are also implicated in other processes related to crossover formation, including DSB formation, inhibition of promiscuous formation of the synaptonemal complex (SC), and the meiotic prophase checkpoint that monitors both DSB processing and SCs. We examined the behavior of two previously uncharacterized meiosis-specific mouse HORMA-domain proteins—HORMAD1 and HORMAD2—in wild-type mice and in mutants defective in DSB processing or SC formation. HORMADs are preferentially associated with unsynapsed chromosome axes throughout meiotic prophase. We observe a strong negative correlation between SC formation and presence of HORMADs on axes, and a positive correlation between the presumptive sites of high checkpoint-kinase ATR activity and hyper-accumulation of HORMADs on axes. HORMADs are not depleted from chromosomes in mutants that lack SCs. In contrast, DSB formation and DSB repair are not absolutely required for depletion of HORMADs from synapsed axes. A simple interpretation of these findings is that SC formation directly or indirectly promotes depletion of HORMADs from chromosome axes. We also find that TRIP13 protein is required for reciprocal distribution of HORMADs and the SYCP1/SC-component along chromosome axes. Similarities in mouse and budding yeast meiosis suggest that TRIP13/Pch2 proteins have a conserved role in establishing mutually exclusive HORMAD-rich and synapsed chromatin domains in both mouse and yeast. Taken together, our observations raise the possibility that involvement of meiotic HORMA-domain proteins in the regulation of homologue interactions is conserved in mammals.


Nature Genetics | 2001

Mutations at the mitochondrial DNA polymerase (POLG) locus associated with male infertility

Anja T. Rovio; David R. Marchington; Susanne Donat; Hans Christian Schuppe; Josef Abel; Ellen Fritsche; David J. Elliott; Pekka Laippala; Arja L. Ahola; David McNay; Robert F. Harrison; Barbara Hughes; Thomas B. Barrett; David M. D. Bailey; Denise Mehmet; Anne M. Jequier; Tim Hargreave; Shu Huei Kao; James M. Cummins; David E. Barton; Howard J. Cooke; Yau Huei Wei; Lars Wichmann; Joanna Poulton; Howard T. Jacobs

Human mitochondrial DNA polymerase, encoded by POLG, contains a polyglutamine tract encoded by a CAG microsatellite repeat. Analysis of POLG genotypes in different populations identified an association between absence of the common, ten-repeat allele and male infertility typified by a range of sperm quality defects but excluding azoospermia.

Collaboration


Dive into the Howard J. Cooke's collaboration.

Top Co-Authors

Avatar

Qinghua Shi

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Yuanwei Zhang

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Xiaohua Jiang

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huan Zhang

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Bo Xu

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Ihtisham Bukhari

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Liu Wang

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Mary Taggart

Western General Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge