Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hsi-Tsung Cheng is active.

Publication


Featured researches published by Hsi-Tsung Cheng.


Antimicrobial Agents and Chemotherapy | 2013

Boosting Salt Resistance of Short Antimicrobial Peptides

Hung-Lun Chu; Hui-Yuan Yu; Bak-Sau Yip; Ya-Han Chih; Chong-Wen Liang; Hsi-Tsung Cheng; Jya-Wei Cheng

ABSTRACT The efficacies of many antimicrobial peptides are greatly reduced under high salt concentrations, therefore limiting their use as pharmaceutical agents. Here, we describe a strategy to boost salt resistance and serum stability of short antimicrobial peptides by adding the nonnatural bulky amino acid β-naphthylalanine to their termini. The activities of the short salt-sensitive tryptophan-rich peptide S1 were diminished at high salt concentrations, whereas the activities of its β-naphthylalanine end-tagged variants were less affected.


Antimicrobial Agents and Chemotherapy | 2011

Easy Strategy To Increase Salt Resistance of Antimicrobial Peptides

Hui-Yuan Yu; Chih-Hsiung Tu; Bak-Sau Yip; Heng-Li Chen; Hsi-Tsung Cheng; Kuo-Chun Huang; Hsiu-Jung Lo; Jya-Wei Cheng

ABSTRACT The efficacies of many antimicrobial peptides are greatly reduced under high salt concentrations, limiting their development as pharmaceutical compounds. Here, we describe an easy strategy to increase salt resistance of antimicrobial peptides by replacing tryptophan or histidine residues with the bulky amino acids β-naphthylalanine and β-(4,4′-biphenyl)alanine. The activities of the salt-sensitive peptide P-113 were diminished at high salt concentrations, whereas the activities of its β-naphthylalanine and β-(4,4′-biphenyl)alanine-substituted variant were less affected.


PLOS ONE | 2015

Novel Antimicrobial Peptides with High Anticancer Activity and Selectivity

Hung-Lun Chu; Bak-Sau Yip; Kuan-Hao Chen; Hui-Yuan Yu; Ya-Han Chih; Hsi-Tsung Cheng; Yu-Ting Chou; Jya-Wei Cheng

We describe a strategy to boost anticancer activity and reduce normal cell toxicity of short antimicrobial peptides by adding positive charge amino acids and non-nature bulky amino acid β-naphthylalanine residues to their termini. Among the designed peptides, K4R2-Nal2-S1 displayed better salt resistance and less toxicity to hRBCs and human fibroblast than Nal2-S1 and K6-Nal2-S1. Fluorescence microscopic studies indicated that the FITC-labeled K4R2-Nal2-S1 preferentially binds cancer cells and causes apoptotic cell death. Moreover, a significant inhibition in human lung tumor growth was observed in the xenograft mice treated with K4R2-Nal2-S1. Our strategy provides new opportunities in the development of highly effective and selective antimicrobial and anticancer peptide-based therapeutics.


Protein Expression and Purification | 2008

A new protocol for high-yield purification of recombinant human CXCL8((3-72))K11R/G31P expressed in Escherichia coli.

Hsi-Tsung Cheng; Kuo-Chun Huang; Hui-Yuan Yu; Kun-Jhih Gao; Xixing Zhao; Fang Li; Jennifer Town; John Gordon; Jya-Wei Cheng

The ELR-CXC chemokines are important to neutrophil inflammation in many acute and chronic diseases. Among them, CXCL8 (interleukin-8, IL-8), binds to both the CXCR1 and CXCR2 receptors with high affinity and the expression levels of CXCL8 are elevated in many inflammatory diseases. Recently, an analogue of human CXCL8, CXCL8((3-72))K11R/G31P (hG31P) has been developed. It has been demonstrated that hG31P is a high affinity antagonist for both CXCR1 and CXCR2. To obtain large quantities of hG31P, we have successfully constructed and expressed hG31P in Escherichia coli. Moreover, we have developed a new protocol for high-yield purification of hG31P and for the removal of lipopolysaccharide (LPS, endotoxin) associated with hG31P due to the expression in E. coli. The purity of hG31P is more than 95% and the final yield is 9.7mg hG31P per gram of cell paste. The purified hG31P was tested by various biological assays. In addition, the structural properties of hG31P were studied by circular dichroism (CD), ultracentrifuge, isothermal titration calorimetry (ITC), and nuclear magnetic resonance (NMR) spectroscopy. Our results indicate that this purification protocol is very simple and easy to amplify at a large scale. The results of this study will provide an effective route to produce enough hG31P for future clinical studies.


ChemBioChem | 2010

Rational Design of Tryptophan‐Rich Antimicrobial Peptides with Enhanced Antimicrobial Activities and Specificities

Hui-Yuan Yu; Kuo-Chun Huang; Bak-Sau Yip; Chih‐Hsiang Tu; Heng-Li Chen; Hsi-Tsung Cheng; Jya-Wei Cheng

Trp‐rich antimicrobial peptides play important roles in the host innate defense mechanism of many plants and animals. A series of short Trp‐rich peptides derived from the C‐terminal region of Bothrops asper myothoxin II, a Lys49 phospholipase A2 (PLA2), were found to reproduce the antimicrobial activities of their parent molecule. Of these peptides, KKWRWWLKALAKK—designated PEM‐2—was found to display improved activity against both Gram‐positive and Gram‐negative bacteria. To improve the antimicrobial activity of PEM‐2 for potential clinical applications further, we determined the solution structure of PEM‐2 bound to membrane‐mimetic dodecylphosphocholine (DPC) micelles by two‐dimensional NMR methods. The DPC micelle‐bound structure of PEM‐2 adopts an α‐helical conformation and the positively charged residues are clustered together to form a hydrophilic patch. The surface electrostatic potential map indicates that two of the three tryptophan residues are packed against the peptide backbone and form a hydrophobic face with Leu7, Ala9, and Leu10. A variety of biophysical and biochemical experiments, including circular dichroism, fluorescence spectroscopy, and microcalorimetry, were used to show that PEM‐2 interacted with negatively charged phospholipid vesicles and efficiently induced dye release from these vesicles, suggesting that the antimicrobial activity of PEM‐2 could be due to interactions with bacterial membranes. Potent analogues of PEM‐2 with enhanced antimicrobial and less pronounced hemolytic activities were designed with the aid of these structural studies.


Biopolymers | 2010

Identification of a heparin binding peptide from the Japanese encephalitis virus envelope protein.

Heng-Li Chen; Shi-Yi Her; Kuo-Chun Huang; Hsi-Tsung Cheng; Chi-Wei Wu; Suh-Chin Wu; Jya-Wei Cheng

The flavivirus envelope protein is the dominant antigen in eliciting neutralizing antibodies and plays an important role in inducing immunologic responses in the infected host. It has been shown that highly sulfated forms of heparin sulfate can bind to the envelope protein and are involved in flavivirus infection. Among the three structural domains, domain III is the major antigenic domain of the envelope protein. We have prepared an extended form of the JEV domain III protein with residues ranging from 261 to 402 and determined its heparin binding sites. Based on NMR, fluorescence spectroscopy, and site‐directed mutagenesis studies, we have identified that only the N‐terminal region (residues 279–293) and some spatially adjacent residues of JEV domain III are involved in heparin binding. Moreover, a synthetic peptide corresponding to this region also demonstrates strong affinity to heparin. Our results provide a basis for further understanding the interactions of flaviviruses and glycosaminoglycans on the host cell surfaces.


Biochimica et Biophysica Acta | 2013

Correlations between membrane immersion depth, orientation, and salt-resistance of tryptophan-rich antimicrobial peptides.

Hui-Yuan Yu; Bak-Sau Yip; Chih‐Hsiang Tu; Heng-Li Chen; Hung-Lun Chu; Ya-Han Chih; Hsi-Tsung Cheng; Shih-Che Sue; Jya-Wei Cheng

The efficacies of many antimicrobial peptides are greatly reduced in the presence of high salt concentrations therefore limiting their development as pharmaceutical compounds. PEM-2-W5K/A9W, a short Trp-rich antimicrobial peptide developed based on the structural studies of PEM-2, has been shown to be highly active against various bacterial strains with less hemolytic activity. Here, correlations between membrane immersion depth, orientation, and salt-resistance of PEM-2 and PEM-2-W5K/A9W have been investigated via solution structure and paramagnetic resonance enhancement studies. The antimicrobial activities of PEM-2-W5K/A9W and PEM-2 against various bacterial and fungal strains including multidrug-resistant and clinical isolates under high salt conditions were tested. The activities of the salt-sensitive peptide PEM-2 were reduced and diminished at high salt concentrations, whereas the activities of PEM-2-W5K/A9W were less affected. The results indicated that the strong salt-resistance of PEM-2-W5K/A9W may arise from the peptide positioning itself deeply into microbial cell membranes and thus able to disrupt the membranes more efficiently.


Antimicrobial Agents and Chemotherapy | 2015

Ultrashort Antimicrobial Peptides with Antiendotoxin Properties

Ya-Han Chih; Yen-Shan Lin; Bak-Sau Yip; Hsiu-Ju Wei; Hung-Lun Chu; Hui-Yuan Yu; Hsi-Tsung Cheng; Yu-Ting Chou; Jya-Wei Cheng

ABSTRACT Release of lipopolysaccharide (LPS) (endotoxin) from bacteria into the bloodstream may cause serious unwanted stimulation of the host immune system. Some but not all antimicrobial peptides can neutralize LPS-stimulated proinflammatory responses. Salt resistance and serum stability of short antimicrobial peptides can be boosted by adding β-naphthylalanine to their termini. Herein, significant antiendotoxin effects were observed in vitro and in vivo with the β-naphthylalanine end-tagged variants of the short antimicrobial peptides S1 and KWWK.


Molecules | 2018

High Level Expression and Purification of the Clinically Active Antimicrobial Peptide P-113 in Escherichia coli

Kuang-Ting Cheng; Chih-Lung Wu; Bak-Sau Yip; Hui-Yuan Yu; Hsi-Tsung Cheng; Ya-Han Chih; Jya-Wei Cheng

P-113, which was originally derived from the human saliva protein histatin 5, is a histidine-rich antimicrobial peptide with the sequence AKRHHGYKRKFH. P-113 is currently undergoing phase II clinical trial as a pharmaceutical agent to fight against fungal infections in HIV patients with oral candidiasis. Previously, we developed a new procedure for the high-yield expression and purification of hG31P, an analogue and antagonist of human CXCL8. Moreover, we have successfully removed lipopolysaccharide (LPS, endotoxin) associated with hG31P in the expression with Escherichia coli. In this paper, we have used hG31P as a novel fusion protein for the expression and purification of P-113. The purity of the expressed P-113 is more than 95% and the yield is 4 mg P-113 per liter of E. coli cell culture in Luria-Bertani (LB) medium. The antimicrobial activity of the purified P-113 was tested. Furthermore, we used circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy to study the structural properties of P-113. Our results indicate that using hG31P as a fusion protein to obtain large quantities of P-113 is feasible and is easy to scale up for commercial production. An effective way of producing enough P-113 for future clinical studies is evident in this study.


Molecules | 2017

Effects of K11R and G31P Mutations on the Structure and Biological Activities of CXCL8: Solution Structure of Human CXCL8(3-72)K11R/G31P

Hsi-Tsung Cheng; Hui-Yuan Yu; John Gordon; Fang Li; Jya-Wei Cheng

The ELR-CXC chemokines are important to neutrophil inflammation in many acute and chronic diseases. Among them, CXCL8 (interleukin-8, IL-8), the expression levels of which are elevated in many inflammatory diseases, binds to both the CXCR1 and CXCR2 receptors with high affinity. Recently, an analogue of human CXCL8, CXCL8(3–72)K11R/G31P (hG31P) has been developed. It has been demonstrated that hG31P is a high affinity antagonist for both the CXCR1 and CXCR2. Herein, we have determined the solution structure and the CXCR1 N-terminal peptide binding sites of hG31P by NMR spectroscopy. We have found that the displacement within the tertiary structure of the 30 s loop and the N-terminal region and more specifically change of the loop conformation (especially H33), of hG31P may affect its binding to the CXCR1 receptor and thereby inhibit human neutrophil chemotactic responses induced by ELR-CXC chemokines. Our results provide a structural basis for future clinical investigations of this CXCR1/CXCR2 receptor antagonist and for the further development of CXCL8 based antagonists.

Collaboration


Dive into the Hsi-Tsung Cheng's collaboration.

Top Co-Authors

Avatar

Jya-Wei Cheng

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Hui-Yuan Yu

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Bak-Sau Yip

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Heng-Li Chen

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Kuo-Chun Huang

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Ya-Han Chih

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Hung-Lun Chu

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Chih‐Hsiang Tu

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Jiun-Ming Wu

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Yu-Ting Chou

National Tsing Hua University

View shared research outputs
Researchain Logo
Decentralizing Knowledge