Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hsiang-en Wu is active.

Publication


Featured researches published by Hsiang-en Wu.


Molecular Pain | 2009

Nitric oxide activates ATP-sensitive potassium channels in mammalian sensory neurons: action by direct S-nitrosylation

Takashi Kawano; Vasiliki Zoga; Masakazu Kimura; Mei-Ying Liang; Hsiang-en Wu; Geza Gemes; J. Bruce McCallum; Wai-Meng Kwok; Quinn H. Hogan; Constantine Sarantopoulos

BackgroundATP-sensitive potassium (KATP) channels in neurons regulate excitability, neurotransmitter release and mediate protection from cell-death. Furthermore, activation of KATP channels is suppressed in DRG neurons after painful-like nerve injury. NO-dependent mechanisms modulate both KATP channels and participate in the pathophysiology and pharmacology of neuropathic pain. Therefore, we investigated NO modulation of KATP channels in control and axotomized DRG neurons.ResultsCell-attached and cell-free recordings of KATP currents in large DRG neurons from control rats (sham surgery, SS) revealed activation of KATP channels by NO exogenously released by the NO donor SNAP, through decreased sensitivity to [ATP]i.This NO-induced KATP channel activation was not altered in ganglia from animals that demonstrated sustained hyperalgesia-type response to nociceptive stimulation following spinal nerve ligation. However, baseline opening of KATP channels and their activation induced by metabolic inhibition was suppressed by axotomy. Failure to block the NO-mediated amplification of KATP currents with specific inhibitors of sGC and PKG indicated that the classical sGC/cGMP/PKG signaling pathway was not involved in the activation by SNAP. NO-induced activation of KATP channels remained intact in cell-free patches, was reversed by DTT, a thiol-reducing agent, and prevented by NEM, a thiol-alkylating agent. Other findings indicated that the mechanisms by which NO activates KATP channels involve direct S-nitrosylation of cysteine residues in the SUR1 subunit. Specifically, current through recombinant wild-type SUR1/Kir6.2 channels expressed in COS7 cells was activated by NO, but channels formed only from truncated isoform Kir6.2 subunits without SUR1 subunits were insensitive to NO. Further, mutagenesis of SUR1 indicated that NO-induced KATP channel activation involves interaction of NO with residues in the NBD1 of the SUR1 subunit.ConclusionNO activates KATP channels in large DRG neurons via direct S-nitrosylation of cysteine residues in the SUR1 subunit. The capacity of NO to activate KATP channels via this mechanism remains intact even after spinal nerve ligation, thus providing opportunities for selective pharmacological enhancement of KATP current even after decrease of this current by painful-like nerve injury.


The Journal of Neuroscience | 2011

Store-Operated Ca2+ Entry in Sensory Neurons: Functional Role and the Effect of Painful Nerve Injury

Geza Gemes; Madhavi Latha Yadav Bangaru; Hsiang-en Wu; Qingbo Tang; Dorothee Weihrauch; Andrew S. Koopmeiners; James M. Cruikshank; Wai-Meng Kwok; Quinn H. Hogan

Painful nerve injury disrupts levels of cytoplasmic and stored Ca2+ in sensory neurons. Since influx of Ca2+ may occur through store-operated Ca2+ entry (SOCE) as well as voltage- and ligand-activated pathways, we sought confirmation of SOCE in sensory neurons from adult rats and examined whether dysfunction of SOCE is a possible pathogenic mechanism. Dorsal root ganglion neurons displayed a fall in resting cytoplasmic Ca2+ concentration when bath Ca2+ was withdrawn, and a subsequent elevation of cytoplasmic Ca2+ concentration (40 ± 5 nm) when Ca2+ was reintroduced, which was amplified by store depletion with thapsigargin (1 μm), and was significantly reduced by blockers of SOCE, but was unaffected by antagonists of voltage-gated membrane Ca2+ channels. We identified the underlying inwardly rectifying Ca2+-dependent ICRAC (Ca2+ release activated current), as well as a large thapsigargin-sensitive inward current activated by withdrawal of bath divalent cations, representing SOCE. Molecular components of SOCE, specifically STIM1 and Orai1, were confirmed in sensory neurons at both the transcript and protein levels. Axonal injury by spinal nerve ligation (SNL) elevated SOCE and ICRAC. However, SOCE was comparable in injured and control neurons when stores were maximally depleted by thapsigargin, and STIM1 and Orai1 levels were not altered by SNL, showing that upregulation of SOCE after SNL is driven by store depletion. Blockade of SOCE increased neuronal excitability in control and injured neurons, whereas injured neurons showed particular dependence on SOCE for maintaining levels of cytoplasmic and stored Ca2+, which indicates a compensatory role for SOCE after injury.


The Journal of Pain | 2010

Learned Avoidance from noxious mechanical Simulation but not Threshold Semmes Weinstein filament Stimulation after Nerve Injury in Rats

Hsiang-en Wu; Geza Gemes; Vasiliki Zoga; Takashi Kawano; Quinn H. Hogan

UNLABELLED Noxious mechanical stimulation evokes a complex and sustained hyperalgesic motor response after peripheral nerve injury that contrasts with a brief and simple withdrawal seen after noxious stimulation in control animals or after threshold punctate mechanical stimulation by the von Frey technique. To test which of these behaviors indicate pain, the aversiveness of the experience associated with each was determined using a passive avoidance test in rats after sciatic nerve ligation (SNL) or skin incision alone. After 18 days, step-down latency was measured during 9 sequential trials at 10-minute intervals. At each trial, rats received either no stimulus, needle stimuli, or threshold Semmes Weinstein (SW) filament stimuli after stepping down. Reactions were either a hyperalgesic response or a brief reflexive withdrawal. In SNL animals, needle stimulation produced substantial learned avoidance when animals showed hyperalgesic responses but produced minimal prolonged latency in SNL animals that showed only simple withdrawal responses. No learned avoidance developed using threshold SW testing in SNL animals. These findings show that needle stimulation is aversive in rats responding with hyperalgesic behavior. In contrast, SW stimulation, as well as needle stimulation that produced mere withdrawal, is minimally aversive. PERSPECTIVE The validity of measures of pain in animals is open to question. We demonstrated that needle stimulation is aversive in rats that respond with hyperalgesic-type behavior and is therefore a valid indicator of pain. Stimulation by SW is minimally aversive and is a problematic indicator of pain.


Neuroscience | 2009

ATP-sensitive potassium currents in rat primary afferent neurons: biophysical, pharmacological properties, and alterations by painful nerve injury

Takashi Kawano; Vasiliki Zoga; J.B. McCallum; Hsiang-en Wu; Geza Gemes; Mei-Ying Liang; Stephen E. Abram; Wai-Meng Kwok; Quinn H. Hogan; Constantine Sarantopoulos

ATP-sensitive potassium (K(ATP)) channels may be linked to mechanisms of pain after nerve injury, but remain under-investigated in primary afferents so far. We therefore characterized these channels in dorsal root ganglion (DRG) neurons, and tested whether they contribute to hyperalgesia after spinal nerve ligation (SNL). We compared K(ATP) channel properties between DRG somata classified by diameter into small or large, and by injury status into neurons from rats that either did or did not become hyperalgesic after SNL, or neurons from control animals. In cell-attached patches, we recorded basal K(ATP) channel opening in all neuronal subpopulations. However, higher open probabilities and longer open times were observed in large compared to small neurons. Following SNL, this channel activity was suppressed only in large neurons from hyperalgesic rats, but not from animals that did not develop hyperalgesia. In contrast, no alterations of channel activity developed in small neurons after axotomy. On the other hand, cell-free recordings showed similar ATP sensitivity, inward rectification and unitary conductance (70-80 pS) between neurons classified by size or injury status. Likewise, pharmacological sensitivity to the K(ATP) channel opener diazoxide, and to the selective blockers glibenclamide and tolbutamide, did not differ between groups. In large neurons, selective inhibition of whole-cell ATP-sensitive potassium channel current (I(K(ATP))) by glibenclamide depolarized resting membrane potential (RMP). The contribution of this current to RMP was also attenuated after painful axotomy. Using specific antibodies, we identified SUR1, SUR2, and Kir6.2 but not Kir6.1 subunits in DRGs. These findings indicate that functional K(ATP) channels are present in normal DRG neurons, wherein they regulate RMP. Alterations of these channels may be involved in the pathogenesis of neuropathic pain following peripheral nerve injury. Their biophysical and pharmacological properties are preserved even after axotomy, suggesting that K(ATP) channels in primary afferents remain available for therapeutic targeting against established neuropathic pain.


Anesthesiology | 2009

Axotomy Depletes Intracellular Calcium Stores in Primary Sensory Neurons

Marcel Rigaud; Geza Gemes; Paul D. Weyker; James M. Cruikshank; Takashi Kawano; Hsiang-en Wu; Quinn H. Hogan

Background:The cellular mechanisms of neuropathic pain are inadequately understood. Previous investigations have revealed disrupted Ca2+ signaling in primary sensory neurons after injury. The authors examined the effect of injury on intracellular Ca2+ stores of the endoplasmic reticulum, which critically regulate the Ca2+ signal and neuronal function. Methods:Intracellular Ca2+ levels were measured with Fura-2 or mag-Fura-2 microfluorometry in axotomized fifth lumbar (L5) dorsal root ganglion neurons and adjacent L4 neurons isolated from hyperalgesic rats after L5 spinal nerve ligation, compared to neurons from control animals. Results:Endoplasmic reticulum Ca2+ stores released by the ryanodine-receptor agonist caffeine decreased by 46% in axotomized small neurons. This effect persisted in Ca2+-free bath solution, which removes the contribution of store-operated membrane Ca2+ channels, and after blockade of the mitochondrial, sarco-endoplasmic Ca2+-ATPase and the plasma membrane Ca2+ ATPase pathways. Ca2+ released by the sarco-endoplasmic Ca2+-ATPase blocker thapsigargin and by the Ca2+-ionophore ionomycin was also diminished by 25% and 41%, respectively. In contrast to control neurons, Ca2+ stores in axotomized neurons were not expanded by neuronal activation by K+ depolarization, and the proportionate rate of refilling by sarco-endoplasmic Ca2+-ATPase was normal. Luminal Ca2+ concentration was also reduced by 38% in axotomized neurons in permeabilized neurons. The adjacent neurons of the L4 dorsal root ganglia showed modest and inconsistent changes after L5 spinal nerve ligation. Conclusions:Painful nerve injury leads to diminished releasable endoplasmic reticulum Ca2+ stores and a reduced luminal Ca2+ concentration. Depletion of Ca2+ stores may contribute to the pathogenesis of neuropathic pain.


Neuroscience | 2011

SUBTYPE-SPECIFIC REDUCTION OF VOLTAGE-GATED CALCIUM CURRENT IN MEDIUM-SIZED DORSAL ROOT GANGLION NEURONS AFTER PAINFUL PERIPHERAL NERVE INJURY

J.B. McCallum; Hsiang-en Wu; Qingbo Tang; Wai-Meng Kwok; Quinn H. Hogan

Sensory neurons express a variety of voltage-gated Ca2+ channel subtypes, but reports differ on their proportionate representation, and the effects of painful nerve injury on each subtype are not established. We compared levels of high-voltage activated currents in medium-sized (30-40 μm) dorsal root ganglion neurons dissociated from control animals and those subjected to spinal nerve ligation, using sequential application of semiselective channel blockers (nisoldipine for L-type, SNX-111 or ω-conotoxin GVIA for N-type, agatoxin IVA or ω-conotoxin MVIIC for P/Q-type, and SNX-482 for a component of R-type) during either square wave depolarizations or action potential waveform voltage commands. Using sequential administration of multiple blockers, proportions of total Ca2+ current attributable to different subtypes and the effect of injury depended on the sequence of blocker administration and type of depolarization command. Overall, however, N-type and L-type currents comprised the dominant components of ICa in sensory neurons under control conditions, and these subtypes showed the greatest loss of current following injury (L-type 26-71% loss, N-type 0-51% loss). Further exploration of N-type current identified by its sensitivity to ω-conotoxin GVIA applied alone showed that injury reduced the peak N-type current during step depolarization by 68% and decreased the total charge entry during action potential waveform stimulation by 44%. Isolation of N-type current by blockade of all other subtypes demonstrated a 50% loss with injury, and also revealed an injury-related rightward shift in the activation curve. Non-stationary noise analyses of N-type current in injured neurons revealed unitary channel current and number of channels that were not different from control, which indicates that injury-induced loss of current is due to a decrease in channel open probability. Our findings suggest that diminished Ca2+ influx through N-type and L-type channels may contribute to sensory neuron dysfunction and pain after nerve injury.


Molecular Pain | 2012

Painful nerve injury increases plasma membrane Ca2+-ATPase activity in axotomized sensory neurons

Geza Gemes; Katherine D Oyster; Bin Pan; Hsiang-en Wu; Madhavi Latha Yadav Bangaru; Qingbo Tang; Quinn H. Hogan

BackgroundThe plasma membrane Ca2+-ATPase (PMCA) is the principal means by which sensory neurons expel Ca2+ and thereby regulate the concentration of cytoplasmic Ca2+ and the processes controlled by this critical second messenger. We have previously found that painful nerve injury decreases resting cytoplasmic Ca2+ levels and activity-induced cytoplasmic Ca2+ accumulation in axotomized sensory neurons. Here we examine the contribution of PMCA after nerve injury in a rat model of neuropathic pain.ResultsPMCA function was isolated in dissociated sensory neurons by blocking intracellular Ca2+ sequestration with thapsigargin, and cytoplasmic Ca2+ concentration was recorded with Fura-2 fluorometry. Compared to control neurons, the rate at which depolarization-induced Ca2+ transients resolved was increased in axotomized neurons after spinal nerve ligation, indicating accelerated PMCA function. Electrophysiological recordings showed that blockade of PMCA by vanadate prolonged the action potential afterhyperpolarization, and also decreased the rate at which neurons could fire repetitively.ConclusionWe found that PMCA function is elevated in axotomized sensory neurons, which contributes to neuronal hyperexcitability. Accelerated PMCA function in the primary sensory neuron may contribute to the generation of neuropathic pain, and thus its modulation could provide a new pathway for peripheral treatment of post-traumatic neuropathic pain.


European Journal of Neuroscience | 2006

dextro‐Naloxone or levo‐naloxone reverses the attenuation of morphine antinociception induced by lipopolysaccharide in the mouse spinal cord via a non‐opioid mechanism

Hsiang-en Wu; Han-Sen Sun; Caleb W. Cheng; Maia Terashvili; Leon F. Tseng

Glial stimulation by intrathecal injection of lipopolysaccharide (LPS) attenuated the tail‐flick inhibition produced by morphine given intrathecally in the spinal cord of the male CD‐1 mice. The phenomenon has been defined as antianalgesia. The effects of dextro‐naloxone or levo‐naloxone on the attenuation of morphine‐produced tail‐flick inhibition induced by LPS were then studied. Pretreatment with dextro‐naloxone or levo‐naloxone reversed the attenuation of the morphine‐produced tail‐flick inhibition induced by LPS. Pretreatment with dextro‐naloxone or levo‐naloxone alone did not affect the morphine‐produced tail‐flick inhibition. It is concluded that dextro‐naloxone and levo‐naloxone block the LPS‐induced antianalgesia against morphine antinociception via a non‐opioid mechanism.


European Journal of Pharmacology | 2001

Antisera against endogenous opioids increase the nocifensive response to formalin: demonstration of inhibitory β-endorphinergic control

Hsiang-en Wu; Kuei-chun Hung; Masahiro Ohsawa; Hirokazu Mizoguchi; Leon F. Tseng

The roles of endogenous opioid peptides in the brain in the modulation of nocifensive responses to formalin in ICR mice were studied. Mice were pretreated intracerebroventricularly (i.c.v.) with rabbit antiserum against beta-endorphin, [Leu5]enkephalin, [Met5]enkephalin or dynorphin A-(1-17) 1 h prior to intraplantar injection of formalin (0.5%, 25 microl) and the nocifensive licking responses were then observed. Pretreatment of mice with antiserum against beta-endorphin enhanced the second phase, but not the first phase of the nocifensive responses to formalin. Pretreatment with antiserum against [Leu5]enkephalin also caused a small but statistically significant enhancement of the second phase, but not the first phase of nocifensive responses to formalin. On the other hand, pretreatment with antiserum against [Met5]enkephalin or dynorphin A-(1-17) did not affect the nocifensive response to formalin. Our results indicate that beta-endorphinergic, and to a lesser extent, [Leu5]enkephalinergic systems are activated at the supraspinal sites to attenuate the nocifensive responses to formalin stimulation.


European Journal of Pharmacology | 2008

(+)-Morphine attenuates the (−)-morphine-produced conditioned place preference and the µ-opioid receptor-mediated dopamine increase in the posterior nucleus accumbens of the rat

Maia Terashvili; Hsiang-en Wu; Emma T. Schwasinger; Kuei-chun Hung; Jau-Shyong Hong; Leon F. Tseng

An unbiased conditioned place preference paradigm and the microdialysis technique was used to evaluate the effect of (+)-morphine pretreatment on the conditioned place preference produced by (-)-morphine and the increased release of the dopamine produced by mu-opioid ligand endomorphin-1, respectively, in the posterior nucleus accumbens shell of the male CD rat. (-)-Morphine (2.5-10 microg) microinjected into the posterior nucleus accumbens shell dose-dependently produced the conditioned place preference. Pretreatment with (+)-morphine (0.1-10 pg) given into the posterior accumbens shell for 45 min dose-dependently attenuated the conditioned place preference produced by (-)-morphine (5 microg) given into the same posterior accumbens shell. However, higher doses of (+)-morphine (0.1 and 1 ng) were less effective in attenuating the (-)-morphine-produced conditioned place preference. Thus, like given systemically, (+)-morphine given into the posterior nucleus accumbens shell also induces a U-shaped dose-response curve for attenuating the (-)-morphine-produced conditioned place preference. Microinjection of mu-opioid agonist endomorphin-1 (1-10 microg) given into the ventral tegmental area dose-dependently increased the release of the extracellular dopamine in the posterior nucleus accumbens shell in the urethane-anesthetized rats. The increased dopamine caused by endomorphin-1 (10 microg) was completed blocked by the (+)-morphine (10 pg) pretreatment given into ventral tegmental area. It is concluded that (+)-morphine attenuates the (-)-morphine-produced conditioned place preference and the mu-opioid receptor-mediated increase of extracellular dopamine in the posterior nucleus accumbens shell of the rat.

Collaboration


Dive into the Hsiang-en Wu's collaboration.

Top Co-Authors

Avatar

Leon F. Tseng

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Quinn H. Hogan

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Randy J. Leitermann

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Maia Terashvili

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Hirokazu Mizoguchi

Tohoku Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Han-Sen Sun

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Kuei-chun Hung

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Pan

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Wai-Meng Kwok

Medical College of Wisconsin

View shared research outputs
Researchain Logo
Decentralizing Knowledge