Hsiao-An Pan
National Taiwan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hsiao-An Pan.
ACS Applied Materials & Interfaces | 2013
Chih-Hao Chang; Zih-Jyun Wu; Chuan-Hao Chiu; Yi-Hu Liang; Yu-Shan Tsai; Jia-Ling Liao; Yun Chi; Hsi-Ying Hsieh; Ting-Yi Kuo; Gene-Hsiang Lee; Hsiao-An Pan; Pi-Tai Chou; Jin-Sheng Lin; Meu-Rurng Tseng
Two pyrimidine chelates with the pyridin-2-yl group residing at either the 5- or 4-positions are synthesized. These chelates are then utilized in synthesizing of a new class of heteroleptic Ir(III) metal complexes, namely [Ir(b5ppm)2(fppz)] (1), [Ir(b5bpm)2(fppz)] (2), [Ir(b4bpm)2(fppz)] (3), and [Ir(b5bpm)(fppz)2] (4), for which the abbreviations b5ppm, b5bpm, b4bpm, and fppz represent chelates derived from 2-t-butyl-5-(pyridin-2-yl)pyrimidine, 2-t-butyl-5-(4-t-butylpyridin-2-yl)pyrimidine, 2-t-butyl-4-(4-t-butylpyridin-2-yl)pyrimidine, and 3-trifluoromethyl-5-(pyridin-2-yl) pyrazole, respectively. The single crystal X-ray structural analyses were executed on 1 to reveal their coordination arrangement around the Ir(III) metal element. The 5-substituted pyrimidine complexes 1, 2, and 4 exhibited the first emission peak wavelength (λmax) located in the range 452-457 nm with high quantum yields, whereas the emission of 3 with 4-substituted pyrimidine was red-shifted substantially to longer wavelength with λmax = 535 nm. These photophysical properties were discussed under the basis of computational approaches, particularly the relationship between emission color and the relative position of nitrogen atoms of pyrimidine fragment. For application, organic light-emitting diodes (OLEDs) were also fabricated using 2 and 4 as dopants, attaining the peak external quantum, luminance, and power efficiencies of 17.9% (38.0 cd/A and 35.8 lm/W) and 15.8% (30.6 cd/A and 24.8 lm/W), respectively. Combining sky blue-emitting 2 and red-emitting [Os(bpftz)2(PPh2Me)2] (5), the phosphorescent white OLEDs were demonstrated with stable pure-white emission at CIE coordinate of (0.33, 0.34), and peak luminance efficiency of 35.3 cd/A, power efficiency of 30.4 lm/W, and external quantum efficiency up to 17.3%.
Journal of Physical Chemistry A | 2012
Tsung-Yi Lin; Kuo-Chun Tang; Shen-Han Yang; Jiun-Yi Shen; Yi-Ming Cheng; Hsiao-An Pan; Yun Chi; Pi-Tai Chou
A series of 2-pyridyl pyrazoles 1a and 1-5 with various functional groups attached to either pyrazole or pyridyl moieties have been strategically designed and synthesized in an aim to probe the hydrogen bonding strength in the ground state versus dynamics of excited-state intramolecular proton transfer (ESIPT) reaction. The title compounds all possess a five-membered-ring (pyrazole)N-H···N(pyridine) intramolecular hydrogen bond, in which both the N-H bond and the electron density distribution of the pyridyl nitrogen lone-pair electrons are rather directional, so that the hydrogen bonding strength is relatively weak, which is sensitive to the perturbation of subtle chemical substitution and consequently reflected from the associated ESIPT dynamics. Various approaches such as (1)H NMR (N-H proton) to probe the hydrogen bonding strength and absorption titration to assess the acidity-basicity property were made for all the title analogues. The results, together with supplementary support provided by a computational approach, affirm that the increase of acidity (basicity) on the hydrogen bonding donor (acceptor) sites leads to an increase of hydrogen-bonding strength among the title 2-pyridyl pyrazoles. Luminescence results and the associated ESIPT dynamics further reveal an empirical correlation in that the increase of the hydrogen bonding strength leads to an increase of the rate of ESIPT for the title 2-pyridyl pyrazoles, demonstrating an interesting relationship among N-H acidity, hydrogen bonding strength, and the associated ESIPT rate.
Nature Communications | 2013
Jiun-Yi Shen; Wei-Chih Chao; Chun Liu; Hsiao-An Pan; Hsiao-Ching Yang; Chi-Lin Chen; Yi-Kang Lan; Li-Ju Lin; Jinn-Shyan Wang; Jyh-Feng Lu; Steven Chun-Wei Chou; Kuo-Chun Tang; Pi-Tai Chou
Scientists have made tremendous efforts to gain understanding of the water molecules in proteins via indirect measurements such as molecular dynamic simulation and/or probing the polarity of the local environment. Here we present a tryptophan analogue that exhibits remarkable water catalysed proton-transfer properties. The resulting multiple emissions provide unique fingerprints that can be exploited for direct sensing of a site-specific water environment in a protein without disrupting its native structure. Replacing tryptophan with the newly developed tryptophan analogue we sense different water environments surrounding the five tryptophans in human thromboxane A₂ synthase. This development may lead to future research to probe how water molecules affect the folding, structures and activities of proteins.
Journal of Physical Chemistry A | 2012
Chun Liu; Kuo-Chun Tang; Hao Zhang; Hsiao-An Pan; Jianli Hua; Bo Li; Pi-Tai Chou
Electron donor-acceptor types of multibranched triarylamine end-capped triazines have been systematically investigated by steady-state electronic spectroscopy, electrochemistry, femtosecond fluorescence anisotropy and solvent relaxation dynamics. The results, together with computational approach, have gained in-depth insight into their excited-state properties, especially the interactions between branches. Among different branched triarylamines of one, two and three arms, the interbranch interaction between each arm is weak, as evidenced by their nearly identical absorption spectral profile and frontier orbitals analyses. Upon S(0) → S(1) excitation, the electronic delocalization in the three-branched triarylamine end-capped triazine is resolved to be 680 ± 130 fs, followed by a slow (28 ± 3 ps) electronic localization into one branch and consequently a rotational depolarization of 2.0 ± 0.1 ns. Similar delocalization dynamics was resolved for the two-branched triarylamine end-capped triazine (electronic delocalization, 500 ± 90 fs; twisting localization, 21 ± 5 ps; rotational depolarization, 700 ± 30 ps). The comparable electron delocalization and solvent relaxation time scale may set up a new paradigm to investigate their specific correlation in the early time domain.
Inorganic Chemistry | 2012
Cheng-Huei Lin; Chih‐Yuan Lin; Jui-Yi Hung; Yao-Yuan Chang; Yun Chi; Min-Wen Chung; Yuh-Chia Chang; Chun Liu; Hsiao-An Pan; Gene-Hsiang Lee; Pi-Tai Chou
With the motivation of assembling cyclometalated complexes without nitrogen-containing heterocycle, we report here the design and systematic synthesis of a class of Ir(III) metal complexes functionalized with facially coordinated phosphite (or phosphonite) dicyclometalate tripod, together with a variety of phosphine, chelating diphosphine, or even monocyclometalate phosphite ancillaries. Thus, treatment of [IrCl(3)(tht)(3)] with stoichiometric amount of triphenylphosphite (or diphenyl phenylphosphonite), two equiv of PPh(3), and in presence of NaOAc as cyclometalation promoter, gives formation of respective tripodal dicyclometalating complexes [Ir(tpit)(PPh(3))(2)Cl] (2a), [Ir(dppit)(PPh(3))(2)Cl] (2b), and [Ir(dppit)(PMe(2)Ph)(2)Cl] (2c) in high yields, where tpitH(2) = triphenylphosphite and dppitH(2) = diphenyl phenylphosphonite. The reaction sequence that afforded these complexes is established. Of particular interest is isolation of an intermediate [Ir(tpitH)(PPh(3))(2)Cl(2)] (1a) with monocyclometalated phosphite, together with the formation of [Ir(tpit)(tpitH)(PPh(3))] (3a) with all tripodal, bidentate, and monodentate phosphorus donors coexisting on the coordination sphere, upon treatment of 2a with a second equiv of triphenylphosphite. Spectroscopic studies were performed to explore the photophysical properties. For all titled Ir(III) complexes, virtually no emission can be observed in either solution at room temperature or 77 K CH(2)Cl(2) matrix. Time-dependent DFT calculation indicates that the lowest energy triplet manifold involves substantial amount of metal centered (3)MC dd contribution. Due to its repulsive potential energy surface (PES) that touches the PES of ground state, the (3)MC dd state executes predominant nonradiative deactivation process.
Journal of the American Chemical Society | 2011
Kuo-Chun Tang; Ming-Jen Chang; Tsung-Yi Lin; Hsiao-An Pan; Tzu-Chien Fang; Kew-Yu Chen; Wen-Yi Hung; Yu-Hsiang Hsu; Pi-Tai Chou
Journal of the American Chemical Society | 2012
Kuan-Lin Wu; Cheng-Hsuan Li; Yun Chi; John N. Clifford; Lydia Cabau; Emilio Palomares; Yi-Ming Cheng; Hsiao-An Pan; Pi-Tai Chou
Advanced Functional Materials | 2012
Bo-Sian Du; Jia-Ling Liao; Ming-Hong Huang; Cheng-Huei Lin; Hao-Wu Lin; Yun Chi; Hsiao-An Pan; Gang-Lun Fan; Ken-Tsung Wong; Gene-Hsiang Lee; Pi-Tai Chou
Angewandte Chemie | 2012
Kuan-Lin Wu; Shu-Te Ho; Chun-Cheng Chou; Yuh-Chia Chang; Hsiao-An Pan; Yun Chi; Pi-Tai Chou
Journal of Physical Chemistry C | 2013
Yuh-Chia Chang; Kuo-Chun Tang; Hsiao-An Pan; Shih-Hung Liu; Igor O. Koshevoy; Antti J. Karttunen; Wen-Yi Hung; Ming-Hung Cheng; Pi-Tai Chou