Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hsiao Chien Chen is active.

Publication


Featured researches published by Hsiao Chien Chen.


Analyst | 2014

Innovative fabrication of a Au nanoparticle-decorated SiO2 mask and its activity on surface-enhanced Raman scattering

Liang-Yih Chen; Kuang Hsuan Yang; Hsiao Chien Chen; Yu Chuan Liu; Ching-Hsiang Chen; Qing Ye Chen

Surface-enhanced Raman scattering (SERS) utilizing the well-defined localized surface plasmon resonance (LSPR) of Ag and Au nanoparticles (NPs) under resonant irradiation has emerged as a promising spectroscopy technique for providing vibrational information on trace molecules. The Raman scattering intensity from molecules close to the surface of these finely divided metals can be significantly enhanced by a factor of more than 10(6). In addition to the high sensitivity, the reproducibility of the SERS signal is also an important parameter for its reliable application. In this work, we report on the innovative and facile fabrication of a Au NP-decorated SiO2 mask coated on indium tin oxide (ITO) glass as a SERS array substrate. First, a highly ordered porous SiO2 mask with pore sizes of 350 nm in diameter and wall thickness of 60 nm was deposited on ITO glass by using spin coating. Then, Au NPs were controllably decorated into the pores of the conductive ITO glass-bottomed SiO2 mask by using sonoelectrochemical deposition-dissolution cycling (SEDDC). Experimental results indicate that the SERS effect of Rhodamine 6G (R6G) observed on this developed substrate increases with an increase in the deposition time of Au NPs in SEDDC. The corresponding optimal enhancement factor (EF) that is obtained is ca. 6.5 × 10(7). Significantly, this system achieves an optimal reproducibility under a medium-length deposition time of Au NPs in SEDDC with a relative standard deviation (RSD) of 12% for measurements of five spots on different areas. The low RSD of the SERS signal and the large EF suggest that the developed array system can serve as an excellent spectroscopy platform for practical applications in analytical chemistry.


Scientific Reports | 2015

Innovative strategy with potential to increase hemodialysis efficiency and safety

Hsiao Chien Chen; Hsiu Chen Lin; Hsi Hsien Chen; Fu Der Mai; Yu Chuan Liu; Chun Mao Lin; Chun Chao Chang; Hui Yen Tsai; Chih Ping Yang

Uremic toxins are mainly represented by blood urine nitrogen (BUN) and creatinine (Crea) whose removal is critically important in hemodialysis (HD) for kidney disease. Patients undergoing HD have a complex illness, resulting from: inadequate removal of organic waste, dialysis-induced oxidative stress and membrane-induced inflammation. Here we report innovative breakthroughs for efficient and safe HD by using a plasmon-induced dialysate comprising Au nanoparticles (NPs)-treated (AuNT) water that is distinguishable from conventional deionized (DI) water. The diffusion coefficient of K3Fe(CN)6 in saline solution can be significantly increased from 2.76, to 4.62 × 10−6 cm s−1, by using AuNT water prepared under illumination by green light-emitting diodes (LED). In vitro HD experiments suggest that the treatment times for the removals of 70% BUN and Crea are reduced by 47 and 59%, respectively, using AuNT water instead of DI water in dialysate, while additionally suppressing NO release from lipopolysaccharide (LPS)-induced inflammatory cells.


Analytical Chemistry | 2015

Quantitative evaluation on activated property-tunable bulk liquid water with reduced hydrogen bonds using deconvoluted raman spectroscopy

Hsiao Chien Chen; Fu-Der Mai; Kuang Hsuan Yang; Liang-Yih Chen; Chih Ping Yang; Yu Chuan Liu

Interesting properties of water with distinguishable hydrogen-bonding structure on interfacial phase or in confined environment have drawn wide attentions. However, these unique properties of water are only found within the interfacial phase and confined environment, thus, their applications are limited. In addition, quantitative evaluation on these unique properties associating with the enhancement of waters physical and chemical activities represents a notable challenge. Here we report a practicable production of free-standing liquid water at room temperature with weak hydrogen-bonded structure naming Au nanoparticles (NPs)-treated (AuNT) water via treating by plasmon-induced hot electron transfer occurred on resonantly illuminated gold NPs (AuNPs). Compared to well-known untreated bulk water (deionized water), the prepared AuNT water exhibits many distinct activities in generally physical and chemical reactions, such as high solubilities to NaCl and O2. Also, reducing interaction energy within water molecules provides lower overpotential and higher efficiency in electrolytic hydrogen production. In addition, these enhanced catalytic activities of AuNT water are tunable by mixing with deionized water. Also, most of these tunable activities are linearly proportional to its degree of nonhydrogen-bonded structure (DNHBS), which is derived from the O-H stretching in deconvoluted Raman spectrum.


Scientific Reports | 2016

Triggering comprehensive enhancement in oxygen evolution reaction by using newly created solvent

Hsiao Chien Chen; Fu Der Mai; Kuang Hsuan Yang; Liang-Yih Chen; Chih Ping Yang; Yu Chuan Liu

Theoretical calculations indicate that the properties of confined liquid water, or liquid water at surfaces, are dramatically different from those of liquid bulk water. Here we present an experimentally innovative strategy on comprehensively efficient oxygen evolution reaction (OER) utilizing plasmon-induced activated water, creating from hot electron decay at resonantly illuminated Au nanoparticles (NPs). Compared to conventional deionized (DI) water, the created water owns intrinsically reduced hydrogen-bonded structure and a higher chemical potential. The created water takes an advantage in OER because the corresponding activation energy can be effectively reduced by itself. Compared to DI water-based solutions, the OER efficiencies at Pt electrodes increased by 69.3%, 21.1% and 14.5% in created water-based acidic, neutral and alkaline electrolyte solutions, respectively. The created water was also effective for OERs in photoelectrochemically catalytic and in inert systems. In addition, the efficiency of OER increased by 47.5% in created water-based alkaline electrolyte solution prepared in situ on a roughened Au electrode. These results suggest that the created water has emerged as an innovative activator in comprehensively effective OERs.


Green Chemistry | 2016

An environmentally friendly etching agent: vapor from hot electron-activated liquid water

Hsiao Chien Chen; Fu Der Mai; Kuang Hsuan Yang; Hui Yen Tsai; Chih Ping Yang; Chien Chung Chen; Chao Hsuan Chen; Yu Chuan Liu

A novel strategy for an environmentally friendly etching process is proposed based on the vapor from hot electron-activated (HEA) water, in which, HEA water with a weakly hydrogen-bonded structure is neutral. Compared to the vapor from deionized (DI) water, the vapor from HEA water exhibits a facile etching process to a glass sheet after exposing it to vapor at room temperature. The etched glass sheet demonstrates a granular surface morphology with a hydrophobic structure. In addition, the resulting nanostructured glass shows a uniform signal intensity of surface-enhanced Raman scattering (SERS) of rhodamine 6G (R6G). This is favorable for developing reliable sensors. The adhesion of deposited metals on the etched glass is also enhanced. Furthermore, the distortion and reformation of the deposited gold nanoparticles (AuNPs) by vapor from HEA water were observed. It suggests that this vapor has higher energy than conventional DI water does. This innovative concept has emerged as a promising strategy for environmentally friendly nanostructured etching.


Scientific Reports | 2015

Innovative Strategy on Hydrogen Evolution Reaction Utilizing Activated Liquid Water.

Bing-Joe Hwang; Hsiao Chien Chen; Fu Der Mai; Hui Yen Tsai; Chih Ping Yang; John Rick; Yu Chuan Liu

Splitting water for hydrogen production using light, or electrical energy, is the most developed ‘green technique’. For increasing efficiency in hydrogen production, currently, the most exciting and thriving strategies are focused on efficient and inexpensive catalysts. Here, we report an innovative idea for efficient hydrogen evolution reaction (HER) utilizing plasmon-activated liquid water with reduced hydrogen-bonded structure by hot electron transfer. This strategy is effective for all HERs in acidic, basic and neutral systems, photocatalytic system with a g-C3N4 (graphite carbon nitride) electrode, as well as in an inert system with an ITO (indium tin oxide) electrode. Compared to deionized water, the efficiency of HER increases by 48% based on activated water ex situ on a Pt electrode. Increase in energy efficiency from activated water is 18% at a specific current yield of −20 mA in situ on a nanoscale-granulated Au electrode. Moreover, the onset potential of −0.023 V vs RHE was very close to the thermodynamic potential of the HER (0 V). The measured current density at the corresponding overpotential for HER in an acidic system was higher than any data previously reported in the literature. This approach establishes a new vista in clean green energy production.


Scientific Reports | 2016

Effective Energy Transfer via Plasmon-Activated High-Energy Water Promotes Its Fundamental Activities of Solubility, Ionic Conductivity, and Extraction at Room Temperature.

Chih Ping Yang; Hsiao Chien Chen; Ching Chiung Wang; Po Wei Tsai; Chia Wen Ho; Yu Chuan Liu

Water is a ubiquitous solvent in biological, physical, and chemical processes. Unique properties of water result from water’s tetrahedral hydrogen-bonded (HB) network (THBN). The original THBN is destroyed when water is confined in a nanosized environment or localized at interfaces, resulting in corresponding changes in HB-dependent properties. In this work, we present an innovative idea to validate the reserve energy of high-energy water and applications of high-energy water to promote water’s fundamental activities of solubility, ionic conductivity, and extraction at room temperature. High-energy water with reduced HBs was created by utilizing hot electrons with energies from the decay of surface plasmon excited at gold (Au) nanoparticles (NPs). Compared to conventional deionized (DI) water, solubilities of alkali metal-chloride salts in high-energy water were significantly increased, especially for salts that release heat when dissolved. The ionic conductivity of NaCl in high-energy water was also markedly higher, especially when the electrolyte’s concentration was extremely low. In addition, antioxidative components, such as polyphenols and 2,3,5,4’-tetrahydroxystilbene-2-O-beta-d-glucoside (THSG) from teas, and Polygonum multiflorum (PM), could more effectively be extracted using high-energy water. These results demonstrate that high-energy water has emerged as a promising innovative solvent for promoting water’s fundamental activities via effective energy transfer.


Scientific Reports | 2016

Creation of Electron-doping Liquid Water with Reduced Hydrogen Bonds.

Hsiao Chien Chen; Fu Der Mai; Bing-Joe Hwang; Ming Jer Lee; Ching-Hsiang Chen; Shwu Huey Wang; Hui Yen Tsai; Chih Ping Yang; Yu Chuan Liu

The strength of hydrogen bond (HB) decides water’s property and activity. Here we propose the mechanisms on creation and persistence of innovatively prepared liquid water, which is treated by Au nanoparticles (AuNPs) under resonant illumination of green-light emitting diode (LED) to create Au NP-treated (sAuNT) water, with weak HB at room temperature. Hot electron transfer on resonantly illuminated AuNPs, which is confirmed from Au LIII-edge X-ray absorption near edge structure (XANES) spectra, is responsible for the creation of negatively charged sAuNT water with the incorporated energy-reduced hot electron. This unique electronic feature makes it stable at least for one week. Compared to deionized (DI) water, the resulting sAuNT water exhibits many distinct properties at room temperature. Examples are its higher activity revealed from its higher vapor pressure and lower specific heat. Furthermore, Mpemba effect can be successfully explained by our purposed hypothesis based on sAuNT water-derived idea of water energy and HB.


ACS Applied Materials & Interfaces | 2016

Multifunctions of Excited Gold Nanoparticles Decorated Artificial Kidney with Efficient Hemodialysis and Therapeutic Potential

Hsiao Chien Chen; Chung Yi Cheng; Hsiu Chen Lin; Hsi Hsien Chen; Cheng Hsien Chen; Chih Ping Yang; Kai Huei Yang; Chun Mao Lin; Tsung Yao Lin; Chwen Ming Shih; Yu Chuan Liu

Chronic kidney disease (CKD) is inflammation-related. Patients with chronic renal failure who undergo hemodialysis (HD) have some acute adverse effects caused by dialysis-induced oxidative stress, protein adsorption, platelet adhesion, and activation of coagulation and inflammation. Here, resonantly illuminated gold nanoparticles-modified artificial kidney (AuNPs@AK) for achieving high efficiency accompanying therapeutic strategy for CKD during HD is proposed. The efficiency in removing uremic toxins increased obviously, especially in the presence of protein (closer to the real blood). The excited AuNPs@AK expressed negatively charged surface reduced some acute adverse effects caused by dialysis-induced protein adsorption, platelet adhesion, and activation of coagulation, thus avoiding thrombosis during HD. Unlike to traditional HD which provides only one function of removing uremic toxins, the solution collected from the outlet of the sample channel of excited AuNPs@AK showed an efficient free radical scavenger that could decrease dialysis-induced oxidative stress. In the CKD mouse model, this antioxidative solution from excited AuNPs@AK further decreased fibronectin expression and attenuated renal fibrosis, suggesting a reduced inflammatory response. These successful in vitro and in vivo approaches suggest that resonantly illuminated AuNPs@AK in HD take multiadvantages in shortening treatment time and reducing risk of adverse effects, which promise trailblazing therapeutic strategies for CKD.


RSC Advances | 2014

Surfactant-assisted preparation of surface-enhanced Raman scattering-active substrates

Hsiao Chien Chen; Ting Chu Hsu; Yu Chuan Liu; Kuang Hsuan Yang

As shown in the literature, cationic surfactant hexadecyltrimethylammonium bromide (CTAB) has been predominantly employed in the shape-controlled synthesis of Au nanoparticles (NPs) in solution to produce the corresponding shape-dependent Au NP catalysts. Among the different techniques used to obtain rough metal substrates with surface-enhanced Raman scattering (SERS) activities, controllable and reproducible surface roughness can be generated using an electrochemical process. In this work, innovative SERS-active substrates with Au NPs are prepared for the first time using sonoelectrochemical deposition-dissolution cycles (SEDDCs) in CTAB-containing electrolytes. Encouragingly, the SERS intensity for both the model probe molecule Rhodamine 6G (R6G) and the general example molecule 4-mercaptopyridine (4-MPy) adsorbed onto the developed substrates are higher by more than one order of magnitude compared with R6G and 4-MPy adsorbed onto SERS-active substrates prepared in solutions in the absence of CTAB. Moreover, the limits of detection (LOD) recorded for the developed SERS-active substrates are as low as 2 × 10−15 and 1 × 10−10 M for R6G and 4-MPy, respectively.

Collaboration


Dive into the Hsiao Chien Chen's collaboration.

Top Co-Authors

Avatar

Yu Chuan Liu

Taipei Medical University

View shared research outputs
Top Co-Authors

Avatar

Chih Ping Yang

Taipei Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fu Der Mai

Taipei Medical University

View shared research outputs
Top Co-Authors

Avatar

Hui Yen Tsai

Taipei Medical University

View shared research outputs
Top Co-Authors

Avatar

Bing-Joe Hwang

National Taiwan University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Liang-Yih Chen

National Taiwan University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Chun Chao Chang

Taipei Medical University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming Jer Lee

National Taiwan University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge