Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hsin Wang is active.

Publication


Featured researches published by Hsin Wang.


Phytochemistry | 2001

NMR studies of molecular structure in fruit cuticle polyesters

Xiuhua Fang; Feng Qiu; Bin Yan; Hsin Wang; Andrew J. Mort; Ruth E. Stark

The cuticle of higher plants functions primarily as a protective barrier for the leaves and fruits, controlling microbial attack as well as the diffusion of water and chemicals from the outside environment. Its major chemical constituents are waxes (for waterproofing) and cutin (a structural support polymer). However, the insolubility of cutin has hampered investigations of its covalent structure and domain architecture, which are viewed as essential for the design of crop protection strategies and the development of improved synthetic waterproofing materials. Recently developed strategies designed to meet these investigative challenges include partial depolymerization using enzymatic or chemical reagents and spectroscopic examination of the intact polyesters in a solvent-swelled form. The soluble oligomers from degradative treatments of lime fruit cutin are composed primarily of the expected 10,16-dihydroxyhexadecanoic and 16-hydroxy-10-oxo-hexadecanoic acids; low-temperature HF treatments also reveal sugar units that are covalently attached to the hydroxyfatty acids. Parallel investigations of solvent-swollen cutin using 2D NMR spectroscopy assisted by magic-angle spinning yield well-resolved spectra that permit detailed comparisons to be made among chemical moieties present in the intact biopolymer, the soluble degradation products, and the unreacted solid residue.


Bioorganic & Medicinal Chemistry | 2003

Chemical studies of the antioxidant mechanism of tea catechins: radical reaction products of epicatechin with peroxyl radicals

Shengmin Sang; Shiying Tian; Hsin Wang; Ruth E. Stark; Robert T. Rosen; Chung S. Yang; Chi-Tang Ho

Tea catechins, an important class of polyphenols, have been shown to have antioxidant activity and are thought to act as antioxidants in biological systems. However, the mechanisms of their antioxidant reactions remain unclear. The objective of this study was to characterize the reaction products of epicatechin with peroxyl radicals generated by thermolysis of the azo initiator azo-bisisobutyrylnitrile (AIBN). Structural elucidation of these products can provide insights into specific mechanisms of antioxidant reactions. Eight reaction products were isolated and identified using high-field 1D and 2D NMR spectral analysis. The observation of these compounds confirmed that the B-ring is the initial site for formation of reaction products in the peroxyl radical oxidant system.


Biochemistry | 2008

Following Fungal Melanin Biosynthesis with Solid-State NMR : Biopolymer Molecular Structures and Possible Connections to Cell-Wall Polysaccharides

Junyan Zhong; Susana Frases; Hsin Wang; Arturo Casadevall; Ruth E. Stark

Melanins serve a variety of protective functions in plants and animals, but in fungi such as Cryptococcus neoformans they are also associated with virulence. A recently developed solid-state nuclear magnetic resonance (NMR) strategy, based on the incorporation of site-specific (13)C-enriched precursors into melanin, followed by spectroscopy of both powdered and solvent-swelled melanin ghosts, was used to provide new molecular-level insights into fungal melanin biosynthesis. The side chain of an l-dopa precursor was shown to cyclize and form a proposed indole structure in C. neoformans melanin, and modification of the aromatic rings revealed possible patterns of polymer chain elongation and cross-linking within the biopolymer. Mannose supplied in the growth medium was retained as a beta-pyranose moiety in the melanin ghosts even after exhaustive degradative and dialysis treatments, suggesting the possibility of tight binding or covalent incorporation of the pigment into the polysaccharide fungal cell walls. In contrast, glucose was scrambled metabolically and incorporated into both polysaccharide cell walls and aliphatic chains present in the melanin ghosts, consistent with metabolic use as a cellular nutrient as well as covalent attachment to the pigment. The prominent aliphatic groups reported previously in several fungal melanins were identified as triglyceride structures that may have one or more sites of chain unsaturation. These results establish that fungal melanin contains chemical components derived from sources other than l-dopa polymerization and suggest that covalent linkages between l-dopa-derived products and polysaccharide components may serve to attach this pigment to cell wall structures.


Neurochemical Research | 2004

Anti-narcoleptic agent modafinil and its sulfone: a novel facile synthesis and potential anti-epileptic activity.

Nithiananda Chatterjie; James P. Stables; Hsin Wang; George J. Alexander

We report a facile procedure to synthesize racemic modafinil (diphenylmethylsulfinylacetamide), which is now being used in pharmacotherapy, and its achiral oxidized derivative (diphenylmethylsulfonyl acetamide). Modafinil is of interest more than for its potential anti-narcoleptic activity. It has also been reported to have neuroprotective properties and may potentially be effective in the enhancement of vigilance and cognitive performance. Finally, it may also protect from subclinical seizures that have been implicated as causative factors in autistic spectrum disorders and other neurodegenerative conditions. This agent can now be synthesized simply and in larger amounts than previously, making it more readily available for testing in various research modalities. The described procedure also lends itself to production of several other amides of potential interest. We are currently in the process of synthesizing and testing several new derivatives in this series. The anticonvulsant properties of modafinil and its sulfone derivative have not previously been extensively described in the literature. It may be of interest to note that the oxidized derivative of modafinil is also nontoxic and almost as effective as an anticonvulsant as the parent.


Nucleic Acids Research | 2010

Dynamics on multiple timescales in the RNA-directed RNA polymerase from the cystovirus ϕ6

Zhen Ren; Hsin Wang; Ranajeet Ghose

The de novo initiating RNA-directed RNA polymerase (RdRP), P2, forms the central machinery in the infection cycle of the bacteriophage ϕ6 by performing the dual tasks of replication and transcription of the double-stranded RNA genome in the host cell. By measurement and quantitative analysis of multiple-quantum spin-relaxation data for the δ1 positions of Ile residues that are distributed over the 3D-fold of P2, we find that the enzyme is dynamic both on the fast (ps–ns) and slow (µs–ms) timescales. The characteristics of several motional modes including those that coincide with the catalytic timescale (500–800/s) are altered in the presence of substrate analogs and single-stranded RNA templates. These studies reveal the plasticity of this finely tuned molecular machine and represent a first step towards linking structural information available from a host of crystal structures to catalytic mechanisms and timescales obtained from the measurements of kinetics for homologous systems in solution.


Neurochemical Research | 2001

Synthesis of Valproic Acid Amides of a Melatonin Derivative, a Piracetam and Amantadine for Biological Tests

Nithiananda Chatterjie; George J. Alexander; Hsin Wang

Three new amide derivatives of valproic acid have been synthesized and characterized by spectrophotometric studies. The rationale for the preparation of such agents has been based on the observation that chemical combination of the anticonvulsant pharmacophore, valproic acid with amine moieties produces more effective and less toxic amides. The amine components selected in this work also exhibit neuroactivity with the prospect of these agents being biologically active in controlling not just seizures and but also possessing neuroprotective properties. We report here the synthesis and properties of the valproylamides of 5-methoxytryptamine, related to melatonin (1), of N-substituted 2-pyrrolidinone related to piracetam (2), and of adamantylamine related to amantadine (3). In preliminary tests these compounds showed low toxicity and a variety of anticonvulsive properties, including a delay in onset of activity. These compounds and their derivatives are now available to be tested additionally for control of subclinical seizures, enhancement of cognition, behavior modification and alleviation of symptoms and disorders due to neuronal damage.


Tetrahedron Letters | 2003

Chemical studies of the antioxidant mechanism of theaflavins: radical reaction products of theaflavin 3,3′-digallate with hydrogen peroxide

Shengmin Sang; Shiying Tian; Jin-Woo Jhoo; Hsin Wang; Ruth E. Stark; Robert T. Rosen; Chung S. Yang; Chi-Tang Ho

Abstract The objective of the current study is to characterize the reaction products of theaflavin 3,3′-digallate, one of the major characteristic polyphenols of black tea, with hydroxyl radicals generated by hydrogen peroxide, with the aim of gaining insights into specific mechanisms of antioxidant reactions in physiological systems. Two major reaction products were isolated and identified using high-field 1D and 2D NMR spectral analysis. Both of them are A-ring fission products. The observation of these compounds indicates that the A ring rather than the benzotropolone moiety is the initial site for formation of reaction products in the hydrogen peroxide oxidant system.


Scientific Reports | 2015

Structural and dynamic features of F-recruitment site driven substrate phosphorylation by ERK2

Andrea Piserchio; Venkatesh Ramakrishan; Hsin Wang; Tamer S. Kaoud; Boris Arshava; Kaushik Dutta; Kevin N. Dalby; Ranajeet Ghose

The F-recruitment site (FRS) of active ERK2 binds F-site (Phe-x-Phe-Pro) sequences found downstream of the Ser/Thr phospho-acceptor on cellular substrates. Here we apply NMR methods to analyze the interaction between active ERK2 (ppERK2), and a 13-residue F-site-bearing peptide substrate derived from its cellular target, the transcription factor Elk-1. Our results provide detailed insight into previously elusive structural and dynamic features of FRS/F-site interactions and FRS-driven substrate phosphorylation. We show that substrate F-site engagement significantly quenches slow dynamics involving the ppERK2 activation-loop and the FRS. We also demonstrate that the F-site phenylalanines make critical contacts with ppERK2, in contrast to the proline whose cis-trans isomerization has no significant effect on F-site recognition by the kinase FRS. Our results support a mechanism where phosphorylation of the disordered N-terminal phospho-acceptor is facilitated by its increased productive encounters with the ppERK2 active site due to docking of the proximal F-site at the kinase FRS.


Biochemistry | 2011

A Nuclear Magnetic Resonance-Based Structural Rationale for Contrasting Stoichiometry and Ligand Binding Site(s) in Fatty Acid-Binding Proteins

Yan He; Rima Estephan; Xiaomin Yang; Adriana Vela; Hsin Wang; Cédric Bernard; Ruth E. Stark

Liver fatty acid-binding protein (LFABP) is a 14 kDa cytosolic polypeptide, differing from other family members in the number of ligand binding sites, the diversity of bound ligands, and the transfer of fatty acid(s) to membranes primarily via aqueous diffusion rather than direct collisional interactions. Distinct two-dimensional (1)H-(15)N nuclear magnetic resonance (NMR) signals indicative of slowly exchanging LFABP assemblies formed during stepwise ligand titration were exploited, without determining the protein-ligand complex structures, to yield the stoichiometries for the bound ligands, their locations within the protein binding cavity, the sequence of ligand occupation, and the corresponding protein structural accommodations. Chemical shifts were monitored for wild-type LFABP and an R122L/S124A mutant in which electrostatic interactions viewed as being essential to fatty acid binding were removed. For wild-type LFABP, the results compared favorably with the data for previous tertiary structures of oleate-bound wild-type LFABP in crystals and in solution: there are two oleates, one U-shaped ligand that positions the long hydrophobic chain deep within the cavity and another extended structure with the hydrophobic chain facing the cavity and the carboxylate group lying close to the protein surface. The NMR titration validated a prior hypothesis that the first oleate to enter the cavity occupies the internal protein site. In contrast, (1)H and (15)N chemical shift changes supported only one liganded oleate for R122L/S124A LFABP, at an intermediate location within the protein cavity. A rationale based on protein sequence and electrostatics was developed to explain the stoichiometry and binding site trends for LFABPs and to put these findings into context within the larger protein family.


Biochemistry | 2015

Methyl Relaxation Measurements Reveal Patterns of Fast Dynamics in a Viral RNA-Directed RNA Polymerase.

Sébastien Alphonse; Shibani Bhattacharya; Hsin Wang; Ranajeet Ghose

Molecular dynamics (MD) simulations combined with biochemical studies have suggested the presence of long-range networks of functionally relevant conformational flexibility on the nanosecond time scale in single-subunit RNA polymerases in many RNA viruses. However, experimental verification of these dynamics at a sufficient level of detail has been lacking. Here we describe the fast, picosecond to nanosecond dynamics of an archetypal viral RNA-directed RNA polymerase (RdRp), the 75 kDa P2 protein from cystovirus ϕ12, using analyses of (1)H-(1)H dipole-dipole cross-correlated relaxation at the methyl positions of Ile (δ1), Leu, Val, and Met residues. Our results, which represent the most detailed experimental characterization of fast dynamics in a viral RdRp until date, reveal a highly connected dynamic network as predicted by MD simulations of related systems. Our results suggest that the entry portals for template RNA and substrate NTPs are relatively disordered, while conserved motifs involved in metal binding, nucleotide selection, and catalysis display greater rigidity. Perturbations at the active site through metal binding or functional mutation affect dynamics not only in the immediate vicinity but also at remote regions. Comparison with the limited experimental and extensive functional and in silico results available for homologous systems suggests conservation of the overall pattern of dynamics in viral RdRps.

Collaboration


Dive into the Hsin Wang's collaboration.

Top Co-Authors

Avatar

Ruth E. Stark

City University of New York

View shared research outputs
Top Co-Authors

Avatar

Ranajeet Ghose

City University of New York

View shared research outputs
Top Co-Authors

Avatar

Shiying Tian

City University of New York

View shared research outputs
Top Co-Authors

Avatar

Yan He

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew R. Pincus

SUNY Downstate Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge