Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hsin Yi Lai is active.

Publication


Featured researches published by Hsin Yi Lai.


NeuroImage | 2010

Imaging brain hemodynamic changes during rat forepaw electrical stimulation using functional photoacoustic microscopy

Lun-De Liao; Meng-Lin Li; Hsin Yi Lai; Yen Yu I Shih; Yu Chun Lo; Siny Tsang; Paul C.-P. Chao; Chin-Teng Lin; Fu-Shan Jaw; You-Yin Chen

The present study reported the development of a novel functional photoacoustic microscopy (fPAM) system for investigating hemodynamic changes in rat cortical vessels associated with electrical forepaw stimulation. Imaging of blood optical absorption by fPAM at multiple appropriately-selected and distinct wavelengths can be used to probe changes in total hemoglobin concentration (HbT, i.e., cerebral blood volume [CBV]) and hemoglobin oxygen saturation (SO(2)). Changes in CBV were measured by images acquired at a wavelength of 570nm (lambda(570)), an isosbestic point of the molar extinction spectra of oxy- and deoxy-hemoglobin, whereas SO(2) changes were sensed by pixel-wise normalization of images acquired at lambda(560) or lambda(600) to those at lambda(570). We demonstrated the capacity of the fPAM system to image and quantify significant contralateral changes in both SO(2) and CBV driven by electrical forepaw stimulation. The fPAM system complements existing imaging techniques, with the potential to serve as a favorable tool for explicitly studying brain hemodynamics in animal models.


Journal of Neuroscience Methods | 2009

Design and fabrication of a polyimide-based microelectrode array: Application in neural recording and repeatable electrolytic lesion in rat brain

You-Yin Chen; Hsin Yi Lai; Sheng-Huang Lin; Chien-Wen Cho; Wen-Hung Chao; Chia-Hsin Liao; Siny Tsang; Yi-Fan Chen; Si-Yue Lin

The design and testing of a new microelectrode array, the NCTU (National Chiao Tung University) probe, was presented. Evaluation results showed it has good biocompatibility, high signal-to-noise ratio (SNR: the root mean square of background noise to the average peak-to-peak amplitude of spikes) during chronic neural recordings, and high reusability for electrolytic lesions. The probe was a flexible, polyimide-based microelectrode array with a long shaft (14.9 mm in length) and 16 electrodes (5 microm-thick and 16 microm in radius); its performance in chronic in vivo recordings was examined in rodents. To improve the precision of implantation, a metallic, impact-resistant layer was sandwiched between the polyimide layers to strengthen the probe. The three-dimensional (3D) structure of electrodes fabricated by electroplating produced rough textures that increased the effective surface area. The in vitro impedance of electrodes on the NCTU probe was 2.4+/-0.52 MOmega at 1 kHz. In addition, post-surgical neural recordings of implanted NCTU probes were conducted for up to 40 days in awake, normally behaving rats. The electrodes on the NCTU probe functioned well and had a high SNR (range: 4-5) with reliable in vivo impedance (<0.7 MOmega). The electrodes were also robust enough to functionally record events, even after the anodal current (30 microA, 10s) was repeatedly applied for 60 times. With good biocompatibility, high and stable SNR for chronic recording, and high tolerance for electrolytic lesion, the NCTU probe would serve as a useful device in future neuroscience research.


Journal of Cerebral Blood Flow and Metabolism | 2012

Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy.

Lun-De Liao; Chin-Teng Lin; Yen Yu I Shih; Timothy Q. Duong; Hsin Yi Lai; Po Hsun Wang; Robby Wu; Siny Tsang; Jyh Yeong Chang; Meng-Lin Li; You-Yin Chen

Optical imaging of changes in total hemoglobin concentration (HbT), cerebral blood volume (CBV), and hemoglobin oxygen saturation (SO 2 ) provides a means to investigate brain hemodynamic regulation. However, high-resolution transcranial imaging remains challenging. In this study, we applied a novel functional photoacoustic microscopy technique to probe the responses of single cortical vessels to left forepaw electrical stimulation in mice with intact skulls. Functional changes in HbT, CBV, and SO 2 in the superior sagittal sinus and different-sized arterioles from the anterior cerebral artery system were bilaterally imaged with unambiguous 36 × 65-μm2 spatial resolution. In addition, an early decrease of SO 2 in single blood vessels during activation (i.e., ‘the initial dip’) was observed. Our results indicate that the initial dip occurred specifically in small arterioles of activated regions but not in large veins. This technique complements other existing imaging approaches for the investigation of the hemodynamic responses in single cerebral blood vessels.


IEEE Transactions on Biomedical Circuits and Systems | 2011

A Programmable Implantable Microstimulator SoC With Wireless Telemetry: Application in Closed-Loop Endocardial Stimulation for Cardiac Pacemaker

Shuenn-Yuh Lee; Mario Yucheng Su; Ming-Chun Liang; You-Yin Chen; Cheng-Han Hsieh; Chung-Min Yang; Hsin Yi Lai; Jou-Wei Lin; Qiang Fang

A low-power, wireless, and implantable microstimulator system on chip with smart powering management, immediate neural signal acquisition, and wireless rechargeable system is proposed. A system controller with parity checking handles the adjustable stimulus parameters for the stimulated objective. In the current paper, the rats intra-cardiac electrogram is employed as the stimulated model in the animal study, and it is sensed by a low-voltage and low-power monitoring analog front end. The power management unit, which includes a rectifier, battery charging and detection, and a regulator, is used for the power control of the internal circuits. The stimulation data and required clock are extracted by a phase-locked-loop-based phase shift keying demodulator from an inductive AC signal. The full chip, which consumes 48 μW only, is fabricated in a TSMC 0.35 μm 2P4M standard CMOS process to perform the monitoring and pacing functions with inductively powered communication in the in vivo study.


Journal of Controlled Release | 2013

SPIO nanoparticle-stabilized PAA-F127 thermosensitive nanobubbles with MR/US dual-modality imaging and HIFU-triggered drug release for magnetically guided in vivo tumor therapy.

Hsin-Yang Huang; Shang-Hsiu Hu; Shih-Ya Hung; Chih-Sheng Chiang; Hao-Li Liu; Tsung-Lang Chiu; Hsin Yi Lai; You-Yin Chen; San-Yuan Chen

Nanobubbles can serve as promising, next-generation theranostic platforms for ultrasound (US) and magnetic resonance (MR) imaging, and combined magnetic targeting (MT) and high-intensity focused ultrasound (HIFU)-triggered drug release for tumor therapy. Nanobubble-based dual contrast enhancement agents encapsulated with perfluoropentane and stabilized with superparamagnetic iron oxide (SPIO) nanoparticles have been synthesized through a single-step emulsion process from thermosensitive F127 and polyacrylic acid (PAA). Both US and MR imaging contrast can be optimized by varying the shell thickness and SPIO-embedded concentration. The US contrast can be enhanced from a mean gray value of 62 to 115, and the MR r2 value can be enhanced from 164 to 208 (s(-1)mM (-1)Fe) by increasing the SPIO concentration from 14.1 to 28.2mg/mL, respectively. In vivo investigations of SPIO-embedded nanobubbles in excised tumors under external MT revealed that the US and MR signals change quantitatively compared to the same site without MT. This combined strategy enables the nanobubbles to enhance both passive targeting (increasing the permeability by HIFU) and physical MT of chemotherapeutic drugs to tumors. The integration of functionalities makes this nanobubble system a powerful and viable new tool to achieve simultaneous in vivo tumor imaging and efficacious cancer therapy.


Biomedical Engineering Online | 2013

Neurovascular coupling: in vivo optical techniques for functional brain imaging

Lun-De Liao; Vassiliy Tsytsarev; Ignacio Delgado-Martinez; Meng-Lin Li; Reha S. Erzurumlu; Ashwati Vipin; Josue Orellana; Yan Ren Lin; Hsin Yi Lai; You-Yin Chen; Nitish V. Thakor

Optical imaging techniques reflect different biochemical processes in the brain, which is closely related with neural activity. Scientists and clinicians employ a variety of optical imaging technologies to visualize and study the relationship between neurons, glial cells and blood vessels. In this paper, we present an overview of the current optical approaches used for the in vivo imaging of neurovascular coupling events in small animal models. These techniques include 2-photon microscopy, laser speckle contrast imaging (LSCI), voltage-sensitive dye imaging (VSDi), functional photoacoustic microscopy (fPAM), functional near-infrared spectroscopy imaging (fNIRS) and multimodal imaging techniques. The basic principles of each technique are described in detail, followed by examples of current applications from cutting-edge studies of cerebral neurovascular coupling functions and metabolic. Moreover, we provide a glimpse of the possible ways in which these techniques might be translated to human studies for clinical investigations of pathophysiology and disease. In vivo optical imaging techniques continue to expand and evolve, allowing us to discover fundamental basis of neurovascular coupling roles in cerebral physiology and pathophysiology.


Journal of Neural Engineering | 2012

Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording

Hsin Yi Lai; Lun-De Liao; Chin-Teng Lin; Jui Hsiang Hsu; Xin He; You-Yin Chen; Jyh Yeong Chang; Hui Fen Chen; Siny Tsang; Yen Yu I Shih

An implantable micromachined neural probe with multichannel electrode arrays for both neural signal recording and electrical stimulation was designed, simulated and experimentally validated for deep brain stimulation (DBS) applications. The developed probe has a rough three-dimensional microstructure on the electrode surface to maximize the electrode-tissue contact area. The flexible, polyimide-based microelectrode arrays were each composed of a long shaft (14.9 mm in length) and 16 electrodes (5 µm thick and with a diameter of 16 µm). The ability of these arrays to record and stimulate specific areas in a rat brain was evaluated. Moreover, we have developed a finite element model (FEM) applied to an electric field to evaluate the volume of tissue activated (VTA) by DBS as a function of the stimulation parameters. The signal-to-noise ratio ranged from 4.4 to 5 over a 50 day recording period, indicating that the laboratory-designed neural probe is reliable and may be used successfully for long-term recordings. The somatosensory evoked potential (SSEP) obtained by thalamic stimulations and in vivo electrode-electrolyte interface impedance measurements was stable for 50 days and demonstrated that the neural probe is feasible for long-term stimulation. A strongly linear (positive correlation) relationship was observed among the simulated VTA, the absolute value of the SSEP during the 200 ms post-stimulus period (ΣSSEP) and c-Fos expression, indicating that the simulated VTA has perfect sensitivity to predict the evoked responses (c-Fos expression). This laboratory-designed neural probe and its FEM simulation represent a simple, functionally effective technique for studying DBS and neural recordings in animal models.


NeuroImage | 2014

Functional MRI reveals frequency-dependent responses during deep brain stimulation at the subthalamic nucleus or internal globus pallidus.

Hsin Yi Lai; John R. Younce; Daniel L. Albaugh; Yu Chieh J ill Kao; Yen Yu I Shih

Deep brain stimulation (DBS) represents a widely used therapeutic tool for the symptomatic treatment of movement disorders, most commonly Parkinsons disease (PD). High frequency stimulation at both the subthalamic nucleus (STN) and internal globus pallidus (GPi) has been used with great success for the symptomatic treatment of PD, although the therapeutic mechanisms of action remain elusive. To better understand how DBS at these target sites modulates neural circuitry, the present study used functional blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to map global brain responses to DBS at the STN and GPi of the rat. Robust activation centered in the ipsilateral motor cortex was observed during high frequency stimulation at either target site, with peak responses observed at a stimulation frequency of 100Hz. Of note, frequency tuning curves were generated, demonstrating that cortical activation was maximal at clinically-relevant stimulation frequencies. Divergent responses to stimulation were noted in the contralateral hemisphere, with strong cortical and striatal negative BOLD signal during stimulation of the GPi, but not STN. The frequency-dependence of the observed motor cortex activation at both targets suggests a relationship with the therapeutic effects of STN and GPi DBS, with both DBS targets being functionally connected with motor cortex at therapeutic stimulation frequencies.


Journal of Materials Chemistry | 2012

Self-assembling PVA-F127 thermosensitive nanocarriers with highly sensitive magnetically-triggered drug release for epilepsy therapy in vivo

Hsin-Yang Huang; Shang-Hsiu Hu; Chih-Shang Chian; San-Yuan Chen; Hsin Yi Lai; You-Yin Chen

Self-assembling, crosslinker-free, highly thermosensitive nanocarriers (TSNCs) were synthesized by the incorporation of iron oxide nanoparticles and hydrophobic drug molecules into a thermosensitive matrix composed of PEO-PPO-PEO (F127) triblock-copolymer and polyvinyl alcohol (PVA) using a mini-emulsion process. The addition of PVA significantly contributes to the stability of the thermosensitive PVA-F127 nanocarriers and reduces drug leakage because it provides hydrogen bonds to react with the PEO segments in the shell. The TSNCs exhibit a remarkable triggered size contraction and shrinkage as a result of opposing polymer thermal effects. These effects include thermal expansion of the PVA and thermal shrinkage of the F127 when the magnetic field induced a temperature change that reached 40 to 50 °C through heat generation of the magnetic nanoparticles. Depending on the PVA/F127 ratios, the TSNCs can act as a remotely triggered drug delivery platform with a tunable burst drug release profile through the structure deformation by an external magnetic field. Furthermore, the TSNCs also presented ultrasensitive magnetic resonance imaging (MRI), as demonstrated by a relatively high r2/r1 ratio (430). A preliminary in vivo study using the Long–Evans rat model has demonstrated a significant reduction in the spike-wave discharge after the anti-epilepsy drug, ethosuximide (ETX), was burst released from the TSNCs. These results were compared to PVA nanocarriers under the same magnetic induction as the in vitro carriers. Using a well-controlled burst release, these nanocarriers may provide significant advantages as highly temperature-responsive nanocarriers for the treatment of acute diseases.


NeuroImage | 2013

Ultra high-resolution fMRI and electrophysiology of the rat primary somatosensory cortex

Yen Yu I Shih; You-Yin Chen; Hsin Yi Lai; Yu Chieh Jill Kao; Bai-Chuang Shyu; Timothy Q. Duong

High-resolution functional-magnetic-resonance-imaging (fMRI) has been used to study brain functions at increasingly finer scale, but whether fMRI can accurately reflect layer-specific neuronal activities is less well understood. The present study investigated layer-specific cerebral-blood-volume (CBV) fMRI and electrophysiological responses in the rat cortex. CBV fMRI at 40×40 μm in-plane resolution was performed on an 11.7-T scanner. Electrophysiology used a 32-channel electrode array that spanned the entire cortical depth. Graded electrical stimulation was used to study activations in different cortical layers, exploiting the notion that most of the sensory-specific neurons are in layers II-V and most of the nociceptive-specific neurons are in layers V-VI. CBV response was strongest in layer IV of all stimulus amplitudes. Current source density analysis showed strong sink currents at cortical layers IV and VI. Multi-unit activities mainly appeared at layers IV-VI and peaked at layer V. Although our measures showed scaled activation profiles during modulation of stimulus amplitude and failed to detect specific recruitment at layers V and VI during noxious electrical stimuli, there appears to be discordance between CBV fMRI and electrophysiological peak responses, suggesting neurovascular uncoupling at laminar resolution. The technique implemented in the present study offers a means to investigate intracortical neurovascular function in the normal and diseased animal models at laminar resolution.

Collaboration


Dive into the Hsin Yi Lai's collaboration.

Top Co-Authors

Avatar

You-Yin Chen

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar

Lun-De Liao

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Yen Yu I Shih

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Yu Chun Lo

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Siny Tsang

University of Virginia

View shared research outputs
Top Co-Authors

Avatar

Nitish V. Thakor

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Fu-Shan Jaw

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aishwarya Bandla

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Yu Hang Liu

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge