Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hsin-Yi Wu is active.

Publication


Featured researches published by Hsin-Yi Wu.


Nucleic Acids Research | 2016

miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database

Chih-Hung Chou; Nai-Wen Chang; Sirjana Shrestha; Sheng-Da Hsu; Yu-Ling Lin; Wei-Hsiang Lee; Chi-Dung Yang; Hsiao-Chin Hong; Ting-Yen Wei; Siang-Jyun Tu; Tzi-Ren Tsai; Shu-Yi Ho; Ting-Yan Jian; Hsin-Yi Wu; Pin-Rong Chen; Nai-Chieh Lin; Hsin-Tzu Huang; Tzu-Ling Yang; Chung-Yuan Pai; Chun-San Tai; Wen-Liang Chen; Chia-Yen Huang; Chun-Chi Liu; Shun-Long Weng; Kuang-Wen Liao; Wen-Lian Hsu; Hsien-Da Huang

MicroRNAs (miRNAs) are small non-coding RNAs of approximately 22 nucleotides, which negatively regulate the gene expression at the post-transcriptional level. This study describes an update of the miRTarBase (http://miRTarBase.mbc.nctu.edu.tw/) that provides information about experimentally validated miRNA-target interactions (MTIs). The latest update of the miRTarBase expanded it to identify systematically Argonaute-miRNA-RNA interactions from 138 crosslinking and immunoprecipitation sequencing (CLIP-seq) data sets that were generated by 21 independent studies. The database contains 4966 articles, 7439 strongly validated MTIs (using reporter assays or western blots) and 348 007 MTIs from CLIP-seq. The number of MTIs in the miRTarBase has increased around 7-fold since the 2014 miRTarBase update. The miRNA and gene expression profiles from The Cancer Genome Atlas (TCGA) are integrated to provide an effective overview of this exponential growth in the miRNA experimental data. These improvements make the miRTarBase one of the more comprehensively annotated, experimentally validated miRNA-target interactions databases and motivate additional miRNA research efforts.


Nucleic Acids Research | 2018

miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions

Chih-Hung Chou; Sirjana Shrestha; Chi-Dung Yang; Nai-Wen Chang; Yu-Ling Lin; Kuang-Wen Liao; Wei-Chih Huang; Ting-Hsuan Sun; Siang-Jyun Tu; Wei-Hsiang Lee; Men-Yee Chiew; Chun-San Tai; Ting-Yen Wei; Tzi-Ren Tsai; Hsin-Tzu Huang; Chung-Yu Wang; Hsin-Yi Wu; Shu-Yi Ho; Pin-Rong Chen; Cheng-Hsun Chuang; Pei-Jung Hsieh; Yi-Shin Wu; Wen-Liang Chen; Meng-Ju Li; Yu-chun Wu; Xin-Yi Huang; Fung Ling Ng; Waradee Buddhakosai; Pei-Chun Huang; Kuan-Chun Lan

Abstract MicroRNAs (miRNAs) are small non-coding RNAs of ∼ 22 nucleotides that are involved in negative regulation of mRNA at the post-transcriptional level. Previously, we developed miRTarBase which provides information about experimentally validated miRNA-target interactions (MTIs). Here, we describe an updated database containing 422 517 curated MTIs from 4076 miRNAs and 23 054 target genes collected from over 8500 articles. The number of MTIs curated by strong evidence has increased ∼1.4-fold since the last update in 2016. In this updated version, target sites validated by reporter assay that are available in the literature can be downloaded. The target site sequence can extract new features for analysis via a machine learning approach which can help to evaluate the performance of miRNA-target prediction tools. Furthermore, different ways of browsing enhance user browsing specific MTIs. With these improvements, miRTarBase serves as more comprehensively annotated, experimentally validated miRNA-target interactions databases in the field of miRNA related research. miRTarBase is available at http://miRTarBase.mbc.nctu.edu.tw/.


Database | 2014

RegPhos 2.0: an updated resource to explore protein kinase–substrate phosphorylation networks in mammals

Kai-Yao Huang; Hsin-Yi Wu; Yi-Ju Chen; Cheng-Tsung Lu; Min-Gang Su; Y. H. Hsieh; Chih-Ming Tsai; Kuo-I Lin; Hsien-Da Huang; Tzong-Yi Lee; Yu-Ju Chen

Protein phosphorylation catalyzed by kinases plays crucial roles in regulating a variety of intracellular processes. Owing to an increasing number of in vivo phosphorylation sites that have been identified by mass spectrometry (MS)-based proteomics, the RegPhos, available online at http://csb.cse.yzu.edu.tw/RegPhos2/, was developed to explore protein phosphorylation networks in human. In this update, we not only enhance the data content in human but also investigate kinase–substrate phosphorylation networks in mouse and rat. The experimentally validated phosphorylation sites as well as their catalytic kinases were extracted from public resources, and MS/MS phosphopeptides were manually curated from research articles. RegPhos 2.0 aims to provide a more comprehensive view of intracellular signaling networks by integrating the information of metabolic pathways and protein–protein interactions. A case study shows that analyzing the phosphoproteome profile of time-dependent cell activation obtained from Liquid chromatography-mass spectrometry (LC-MS/MS) analysis, the RegPhos deciphered not only the consistent scheme in B cell receptor (BCR) signaling pathway but also novel regulatory molecules that may involve in it. With an attempt to help users efficiently identify the candidate biomarkers in cancers, 30 microarray experiments, including 39 cancerous versus normal cells, were analyzed for detecting cancer-specific expressed genes coding for kinases and their substrates. Furthermore, this update features an improved web interface to facilitate convenient access to the exploration of phosphorylation networks for a group of genes/proteins. Database URL: http://csb.cse.yzu.edu.tw/RegPhos2/


BMC Bioinformatics | 2014

Characterization and identification of protein O-GlcNAcylation sites with substrate specificity

Hsin-Yi Wu; Cheng-Tsung Lu; Hui-Ju Kao; Yi-Ju Chen; Yu-Ju Chen; Tzong-Yi Lee

BackgroundProtein O-GlcNAcylation, involving the attachment of single N-acetylglucosamine (GlcNAc) to the hydroxyl group of serine or threonine residues. Elucidation of O-GlcNAcylation sites on proteins is required in order to decipher its crucial roles in regulating cellular processes and aid in drug design. With an increasing number of O-GlcNAcylation sites identified by mass spectrometry (MS)-based proteomics, several methods have been proposed for the computational identification of O-GlcNAcylation sites. However, no development that focuses on the investigation of O-GlcNAcylated substrate motifs has existed. Thus, we were motivated to design a new method for the identification of protein O-GlcNAcylation sites with the consideration of substrate site specificity.ResultsIn this study, 375 experimentally verified O-GlcNAcylation sites were collected from dbOGAP, which is an integrated resource for protein O-GlcNAcylation. Due to the difficulty in characterizing the substrate motifs by conventional sequence logo analysis, a recursively statistical method has been applied to obtain significant conserved motifs. To construct the predictive models learned from the identified substrate motifs, we adopted Support Vector Machines (SVMs). A five-fold cross validation was used to evaluate the predictive model, achieving sensitivity, specificity, and accuracy of 0.76, 0.80, and 0.78, respectively. Additionally, an independent testing set, which was really blind to the training data of predictive model, was used to demonstrate that the proposed method could provide a promising accuracy (0.94) and outperform three other O-GlcNAcylation site prediction tools.ConclusionThis work proposed a computational method to identify informative substrate motifs for O-GlcNAcylation sites. The evaluation of cross validation and independent testing indicated that the identified motifs were effective in the identification of O-GlcNAcylation sites. A case study demonstrated that the proposed method could be a feasible means of conducting preliminary analyses of protein O-GlcNAcylation. We also anticipated that the revealed substrate motif may facilitate the study of extensive crosstalk between O-GlcNAcylation and phosphorylation. This method may help unravel their mechanisms and roles in signaling, transcription, chronic disease, and cancer.


PLOS ONE | 2015

GSHSite: Exploiting an Iteratively Statistical Method to Identify S-Glutathionylation Sites with Substrate Specificity

Yi-Ju Chen; Cheng-Tsung Lu; Kai-Yao Huang; Hsin-Yi Wu; Yu-Ju Chen; Tzong-Yi Lee

S-glutathionylation, the covalent attachment of a glutathione (GSH) to the sulfur atom of cysteine, is a selective and reversible protein post-translational modification (PTM) that regulates protein activity, localization, and stability. Despite its implication in the regulation of protein functions and cell signaling, the substrate specificity of cysteine S-glutathionylation remains unknown. Based on a total of 1783 experimentally identified S-glutathionylation sites from mouse macrophages, this work presents an informatics investigation on S-glutathionylation sites including structural factors such as the flanking amino acids composition and the accessible surface area (ASA). TwoSampleLogo presents that positively charged amino acids flanking the S-glutathionylated cysteine may influence the formation of S-glutathionylation in closed three-dimensional environment. A statistical method is further applied to iteratively detect the conserved substrate motifs with statistical significance. Support vector machine (SVM) is then applied to generate predictive model considering the substrate motifs. According to five-fold cross-validation, the SVMs trained with substrate motifs could achieve an enhanced sensitivity, specificity, and accuracy, and provides a promising performance in an independent test set. The effectiveness of the proposed method is demonstrated by the correct identification of previously reported S-glutathionylation sites of mouse thioredoxin (TXN) and human protein tyrosine phosphatase 1b (PTP1B). Finally, the constructed models are adopted to implement an effective web-based tool, named GSHSite (http://csb.cse.yzu.edu.tw/GSHSite/), for identifying uncharacterized GSH substrate sites on the protein sequences.


Journal of Agricultural and Food Chemistry | 2012

Inhibitory Effects of Chloroform Extracts Derived from Corbicula fluminea on the Release of Pro-inflammatory Cytokines

Ching-Min Lin; Yu-Ling Lin; Nu-Man Tsai; Hsin-Yi Wu; Shu-Yi Ho; Chia-Hung Chen; Yen-Ku Liu; Li-Ping Ho; Ru-Ping Lee; Kuang-Wen Liao

Corbicula fluminea, the primary freshwater bivalve cultivated in Taiwan, was formerly used as a remedy for hepatitis. Recent reports indicate that C. fluminea has many bioactivities, but it remains unknown whether C. fluminea affects inflammation. This study explored the anti-inflammatory activity of C. fluminea. C. fluminea was first treated with chloroform to obtain clam chloroform extracts (CCEs). On the basis of the assay for the release of pro-inflammatory cytokines in vitro and in vivo, the results show that the CCEs significantly lowered the release of lipopolysaccharide (LPS)-induced pro-inflammatory cytokines. Additionally, the CCEs reduced LPS-induced organ damage. Real-time polymerase chain reaction analysis suggested that CCEs inhibit the LPS-induced mRNA expression of interleukin-1β and tumor necrosis factor-α. Western blot analysis indicated that the CCEs increased expression of IκB and attenuated the phosphorylation of IκB. Gas chromatography-mass spectrometry suggests that phytosterols and fatty acids are responsible for the anti-inflammatory properties of CCEs. Taken together, CCEs have the potential to be developed as an anti-inflammatory functional food.


Phytotherapy Research | 2012

7,7′′-Dimethoxyagastisflavone-induced Apoptotic or Autophagic Cell Death in Different Cancer Cells

Chia-Hsiang Hwang; Yu-Ling Lin; Yen-Ku Liu; Chia-Hung Chen; Hsin-Yi Wu; Cheng-Chang Chang; Chao-Yuan Chang; Yu-Kuo Chang; Kuang-Wen Liao; Yiu-Kay Lai

7,7′′‐Dimethoxyagastisflavone (DMGF), a biflavonoid isolated from the needles of Taxus × media cv. Hicksii, was evaluated for its antiproliferative and antineoplastic effects in three human cancer cell lines. Interestingly, DMGF caused cell death via different pathways in different cancer cells. DMGF induced apoptosis, activated caspase‐3 activity and changed the mitochondrial membrane potential in HT‐29 human colon cancer cells. However, the apoptotic pathway is not the major pathway involved in DMGF‐induced cell death in A549 human lung cancer cells and HepG2 human hepatoma cells. Treatment with 3‐MA, an inhibitor of autophagy, significantly decreased DMGF‐induced cell death in HepG2 and A549 cells, but did not affect DMGF‐induced cell death in HT‐29 cells. Following DMGF treatment, the HepG2 cells increased expression of LC3B‐II, a marker used to monitor autophagy in cells. Thus, DMGF induced apoptotic cell death in HT‐29 cells, triggered both apoptotic and autophagic death in A549 cells and induced autophagic cell death in HepG2 cells. Copyright


Journal of Proteomics | 2014

Phosphoproteomic analyses reveal that galectin-1 augments the dynamics of B-cell receptor signaling

Chih-Ming Tsai; Hsin-Yi Wu; Tseng-Hsiung Su; Chu-Wei Kuo; Han-Wen Huang; Cheng-Han Chung; Chien-Sin Chen; Kay-Hooi Khoo; Yu-Ju Chen; Kuo-I Lin

UNLABELLED B-cell activation is important for mounting humoral immune responses and antibody production. Galectin-1 has multiple regulatory functions in immune cells. However, the effects of galectin-1 modulation and the mechanisms underlying the coordination of B-cell activation are unclear. To address this issue, we applied label-free quantitative phosphoproteomic analysis to investigate the dynamics of galectin-1-induced signaling in comparison with that following anti-IgM treatment. A total of 3247 phosphorylation sites on 1245 proteins were quantified, and 70-80% of the 856 responsive phosphoproteins were commonly activated during various biological functions. The similarity between galectin-1- and anti-IgM-elicited B-cell receptor (BCR) signaling pathways was also revealed. Additionally, the mapping of the 149 BCR-responsive phosphorylation sites provided complementary knowledge of BCR signaling. Compared to anti-IgM induction, the phosphoproteomic profiling of BCR signaling, along with validation by western blot analysis and pharmacological inhibitors, revealed that the activation of Syk, Btk, and PI3K may be dominant in galectin-1-mediated activation. We further demonstrated that the proliferation of antigen-primed B cells was diminished in the absence of galectin-1 in an animal model. Together, these findings provided evidence for a new role and insight into the mechanism of how galectin-1 augments the strength of the immunological synapse by modulating BCR signaling. BIOLOGICAL SIGNIFICANCE The current study revealed the first systematic phosphorylation-mediated signaling network and its dynamics in B cell activation. The comparative phosphoproteomic analysis on the dynamics of galectin-1 induced activation profiles not only showed that exogenously added galectin-1 augmented B-cell activation but also revealed its relatively enhanced activation in PI3K pathway. Together with proliferation assay, we further delineated that galectin-1 is important for B-cell proliferation in response to antigen challenge. Our phosphoproteomic study reveals a new role for galectin-1 in augmenting the strength of immunological synapse by modulating BCR signaling.


Cytokine | 2011

Antibodies against Helicobacter pylori heat shock protein 60 aggravate HSP60-mediated proinflammatory responses

Kuang-Wen Liao; Chen-Si Lin; Wen-Liang Chen; Chu-Ting Yang; Ching-Min Lin; Wei-Tung Hsu; Yi-Yin Lin; Kuo-Chin Huang; Hsin-Yi Wu; Ming-Shiang Wu; Chang-Jer Wu; Simon J.T. Mao; Nu-Man Tsai

Anti-Helicobacter pylori heat shock protein 60 (HpHSP60) antibodies are usually found in H. pylori-infected patients and are known to be associated with the progression of gastric diseases. However, the effects of these antibodies on the functions of HpHSP60 have not been identified. This study aims to investigate the effects of the interaction between anti-HSP60 antibodies and HpHSP60 on inflammatory responses. Anti-HpHSP60 polyclonal sera and monoclonal antibodies (mAbs) were produced to evaluate their effects on HpHSP60-induced IL-8 and TNF-α activity. The results indicated that anti-HpHSP60 polyclonal sera collected from patients infected with H. pylori or from rabbit and mice immunized with HpHSP60 could significantly enhance HpHSP60-mediated IL-8 and TNF-α secretion from monocytic THP-1 cells. Similar effects were also found with anti-HpHSP60 mAbs. Further analysis revealed that this phenomenon was only carried out by anti-HpHSP60 antibody but not by other non-specific mAbs. Moreover, the non-specific mAbs decreased the synergism of HpHSP60 and anti-HpHSP60 mAbs in proinflammatory cytokine induction. Herein, we have examined the role of anti-HpHSP60 antibody in host immune responses for the first time. This study demonstrated that H. pylori HSP60/mAbs could modulate helicobacterial pathogenesis by increasing IL-8 and TNF-α production. The pathogen-specific antibodies may execute potential immune functions rather than recognize or neutralize microbes.


Nature Communications | 2016

Temporal regulation of Lsp1 O-GlcNAcylation and phosphorylation during apoptosis of activated B cells

Jung-Lin Wu; Hsin-Yi Wu; Dong-Yan Tsai; Ming-Feng Chiang; Yi-Ju Chen; Shijay Gao; Chun-Cheng Lin; Chun-Hung Lin; Kay-Hooi Khoo; Yu-Ju Chen; Kuo-I Lin

Crosslinking of B-cell receptor (BCR) sets off an apoptosis programme, but the underlying pathways remain obscure. Here we decipher the molecular mechanisms bridging B-cell activation and apoptosis mediated by post-translational modification (PTM). We find that O-GlcNAcase inhibition enhances B-cell activation and apoptosis induced by BCR crosslinking. This proteome-scale analysis of the functional interplay between protein O-GlcNAcylation and phosphorylation in stimulated mouse primary B cells identifies 313 O-GlcNAcylation-dependent phosphosites on 224 phosphoproteins. Among these phosphoproteins, temporal regulation of the O-GlcNAcylation and phosphorylation of lymphocyte-specific protein-1 (Lsp1) is a key switch that triggers apoptosis in activated B cells. O-GlcNAcylation at S209 of Lsp1 is a prerequisite for the recruitment of its kinase, PKC-β1, to induce S243 phosphorylation, leading to ERK activation and downregulation of BCL-2 and BCL-xL. Thus, we demonstrate the critical PTM interplay of Lsp1 that transmits signals for initiating apoptosis after BCR ligation.

Collaboration


Dive into the Hsin-Yi Wu's collaboration.

Top Co-Authors

Avatar

Kuang-Wen Liao

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu-Ling Lin

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Shu-Yi Ho

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nu-Man Tsai

Chung Shan Medical University

View shared research outputs
Top Co-Authors

Avatar

Pin-Rong Chen

National Chiao Tung University

View shared research outputs
Researchain Logo
Decentralizing Knowledge