Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hsinhan Tsai is active.

Publication


Featured researches published by Hsinhan Tsai.


Science | 2015

High-efficiency solution-processed perovskite solar cells with millimeter-scale grains

Wanyi Nie; Hsinhan Tsai; Reza Asadpour; Jean Christophe Blancon; Amanda J. Neukirch; Gautam Gupta; Jared Crochet; Manish Chhowalla; Sergei Tretiak; Muhammad A. Alam; Hsing-Lin Wang; Aditya D. Mohite

Large-crystal perovskite films The performance of organic-inorganic hybrid perovskite planar solar cells has steadily improved. One outstanding issue is that grain boundaries and defects in polycrystalline films degrade their output. Now, two studies report the growth of millimeter-scale single crystals. Nie et al. grew continuous, pinhole-free, thin iodochloride films with a hot-casting technique and report device efficiencies of 18%. Shi et al. used antisolvent vapor-assisted crystallization to grow millimeter-scale bromide and iodide cubic crystals with charge-carrier diffusion lengths exceeding 10 mm. Science, this issue p. 522, p. 519 Solution processing techniques enable the growth of high-quality, large-area perovskite crystals for solar cells. State-of-the-art photovoltaics use high-purity, large-area, wafer-scale single-crystalline semiconductors grown by sophisticated, high-temperature crystal growth processes. We demonstrate a solution-based hot-casting technique to grow continuous, pinhole-free thin films of organometallic perovskites with millimeter-scale crystalline grains. We fabricated planar solar cells with efficiencies approaching 18%, with little cell-to-cell variability. The devices show hysteresis-free photovoltaic response, which had been a fundamental bottleneck for the stable operation of perovskite devices. Characterization and modeling attribute the improved performance to reduced bulk defects and improved charge carrier mobility in large-grain devices. We anticipate that this technique will lead the field toward synthesis of wafer-scale crystalline perovskites, necessary for the fabrication of high-efficiency solar cells, and will be applicable to several other material systems plagued by polydispersity, defects, and grain boundary recombination in solution-processed thin films.


Nature | 2016

High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells

Hsinhan Tsai; Wanyi Nie; Jean Christophe Blancon; Constantinos C. Stoumpos; Reza Asadpour; Boris Harutyunyan; Amanda J. Neukirch; Rafael Verduzco; Jared Crochet; Sergei Tretiak; Laurent Pedesseau; Jacky Even; Muhammad A. Alam; Gautam Gupta; Jun Lou; Pulickel M. Ajayan; Michael J. Bedzyk; Mercouri G. Kanatzidis; Aditya D. Mohite

Three-dimensional organic–inorganic perovskites have emerged as one of the most promising thin-film solar cell materials owing to their remarkable photophysical properties, which have led to power conversion efficiencies exceeding 20 per cent, with the prospect of further improvements towards the Shockley–Queisser limit for a single‐junction solar cell (33.5 per cent). Besides efficiency, another critical factor for photovoltaics and other optoelectronic applications is environmental stability and photostability under operating conditions. In contrast to their three-dimensional counterparts, Ruddlesden–Popper phases—layered two-dimensional perovskite films—have shown promising stability, but poor efficiency at only 4.73 per cent. This relatively poor efficiency is attributed to the inhibition of out-of-plane charge transport by the organic cations, which act like insulating spacing layers between the conducting inorganic slabs. Here we overcome this issue in layered perovskites by producing thin films of near-single-crystalline quality, in which the crystallographic planes of the inorganic perovskite component have a strongly preferential out-of-plane alignment with respect to the contacts in planar solar cells to facilitate efficient charge transport. We report a photovoltaic efficiency of 12.52 per cent with no hysteresis, and the devices exhibit greatly improved stability in comparison to their three-dimensional counterparts when subjected to light, humidity and heat stress tests. Unencapsulated two-dimensional perovskite devices retain over 60 per cent of their efficiency for over 2,250 hours under constant, standard (AM1.5G) illumination, and exhibit greater tolerance to 65 per cent relative humidity than do three-dimensional equivalents. When the devices are encapsulated, the layered devices do not show any degradation under constant AM1.5G illumination or humidity. We anticipate that these results will lead to the growth of single-crystalline, solution-processed, layered, hybrid, perovskite thin films, which are essential for high-performance opto-electronic devices with technologically relevant long-term stability.


Nature Communications | 2016

Light-activated photocurrent degradation and self-healing in perovskite solar cells

Wanyi Nie; Jean Christophe Blancon; Amanda J. Neukirch; Kannatassen Appavoo; Hsinhan Tsai; Manish Chhowalla; Muhammad A. Alam; Claudine Katan; Jacky Even; Sergei Tretiak; Jared Crochet; Gautam Gupta; Aditya D. Mohite

Solution-processed organometallic perovskite solar cells have emerged as one of the most promising thin-film photovoltaic technology. However, a key challenge is their lack of stability over prolonged solar irradiation. Few studies have investigated the effect of light soaking on hybrid perovskites and have attributed the degradation in the optoelectronic properties to photochemical or field-assisted ion migration. Here we show that the slow photocurrent degradation in thin-film photovoltaic devices is due to the formation of light-activated meta-stable deep-level trap states. However, the devices can self-heal completely by resting them in the dark for <1 min or the degradation can be completely prevented by operating the devices at 0 °C. We investigate several physical mechanisms to explain the microscopic origin for the formation of these trap states, among which the creation of small polaronic states involving localized cooperative lattice strain and molecular orientations emerges as a credible microscopic mechanism requiring further detailed studies.


Science | 2017

Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites

Jean Christophe Blancon; Hsinhan Tsai; Wanyi Nie; Costas Stoumpos; Laurent Pedesseau; Claudine Katan; Mikaël Kepenekian; Chan Myae Myae Soe; Kannatassen Appavoo; Sergei Tretiak; Pulickel M. Ajayan; Mercouri G. Kanatzidis; Jacky Even; John Jared Crochet; Aditya D. Mohite

How perovskites have the edge Two-dimensional Ruddlesden-Popper perovskites form quantum wells by sandwiching inorganic-organic perovskite layers used in photovoltaic devices between organic layers. Blancon et al. show that if the perovskite layer is more than two unit cells thick, photogenerated excitons undergo an unusual but highly efficient process for creating free carriers that can be harvested in photovoltaic devices (see the Perspective by Bakr and Mohammed). Lower-energy local states at the edges of the perovskite layer facilitate dissociation into electrons and holes that are well protected from recombination. Science, this issue p.1288; see also p. 1260 Excitons convert spontaneously to free carriers via lower-energy layer-edge states in layered perovskites. Understanding and controlling charge and energy flow in state-of-the-art semiconductor quantum wells has enabled high-efficiency optoelectronic devices. Two-dimensional (2D) Ruddlesden-Popper perovskites are solution-processed quantum wells wherein the band gap can be tuned by varying the perovskite-layer thickness, which modulates the effective electron-hole confinement. We report that, counterintuitive to classical quantum-confined systems where photogenerated electrons and holes are strongly bound by Coulomb interactions or excitons, the photophysics of thin films made of Ruddlesden-Popper perovskites with a thickness exceeding two perovskite-crystal units (>1.3 nanometers) is dominated by lower-energy states associated with the local intrinsic electronic structure of the edges of the perovskite layers. These states provide a direct pathway for dissociating excitons into longer-lived free carriers that substantially improve the performance of optoelectronic devices.


Chemical Communications | 2013

One-step synthesis of Mn3O4/reduced graphene oxide nanocomposites for oxygen reduction in nonaqueous Li–O2 batteries

Qing Li; Ping Xu; Bin Zhang; Hsinhan Tsai; Jian Wang; Hsing-Lin Wang; Gang Wu

A Li-O2 battery based on the Mn3O4/RGO nanocomposite (monodispersed Mn3O4 nanoparticles supported on RGO) cathode exhibits excellent ORR activity and an outstanding initial discharge capacity as high as 16,000 mA h g(-1).


Nano Letters | 2016

Polaron Stabilization by Cooperative Lattice Distortion and Cation Rotations in Hybrid Perovskite Materials

Amanda J. Neukirch; Wanyi Nie; Jean-Christophe Blancon; Kannatassen Appavoo; Hsinhan Tsai; Claudine Katan; Laurent Pedesseau; Jacky Even; Jared Crochet; Gautam Gupta; Aditya D. Mohite; Sergei Tretiak

Solution-processed organometallic perovskites have rapidly developed into a top candidate for the active layer of photovoltaic devices. Despite the remarkable progress associated with perovskite materials, many questions about the fundamental photophysical processes taking place in these devices, remain open. High on the list of unexplained phenomena are very modest mobilities despite low charge carrier effective masses. Moreover, experiments elucidate unique degradation of photocurrent affecting stable operation of perovskite solar cells. These puzzles suggest that, while ionic hybrid perovskite devices may have efficiencies on par with conventional Si and GaAs devices, they exhibit more complicated charge transport phenomena. Here we report the results from an in-depth computational study of small polaron formation, electronic structure, charge density, and reorganization energies using both periodic boundary conditions and isolated structures. Using the hybrid density functional theory, we found that volumetric strain in a CsPbI3 cluster creates a polaron with binding energy of around 300 and 900 meV for holes and electrons, respectively. In the MAPbI3 (MA = CH3NH3) cluster, both volumetric strain and MA reorientation effects lead to larger binding energies at around 600 and 1300 meV for holes and electrons, respectively. Such large reorganization energies suggest appearance of small polarons in organometallic perovskite materials. The fact that both volumetric lattice strain and MA molecular rotational degrees of freedom can cooperate to create and stabilize polarons indicates that in order to mitigate this problem, formamidinium (FA = HC(NH2)2) and cesium (Cs) based crystals and alloys, are potentially better materials for solar cell and other optoelectronic applications.


Journal of Materials Chemistry | 2011

Polymer-assisted preparation of metal nanoparticles with controlled size and morphology

Seaho Jeon; Ping Xu; Bin Zhang; Hsinhan Tsai; Long Y. Chiang; Hsing-Lin Wang

We describe here a one-step synthesis of hybrid metal nanoparticles (MNPs) and polymer composites on glass substrates using poly(vinyl pyrrolidone) (PVP) as both the reducing agent and polymer matrix. With this method, it takes only one minute to produce a nanocomposite thin film that contains MNPs with controlled size and morphology. The size and morphology of gold nanoparticles can be manipulated by simply modulating the ratio between the PVP and the Au precursor, while the nearly monodispersed spherical silver nanoparticles are insensitive to the reaction conditions, which is believed to result from a better control over the crystal structure of the Ag seeds than that of the Au seeds in the presence of PVP. Moreover, the resulting MNP–polymer composites are high-quality thin films with tunable optical properties—the λmax of absorption spectra changes from 480 nm to greater than 580 nm (from blue to red color). This environmentally friendly synthetic technique may open up a new avenue for facile nanomaterial synthesis that is not accessible by conventional solution chemistry.


Journal of Physical Chemistry B | 2010

Solvent Polarity Effect on Chain Conformation, Film Morphology, and Optical Properties of a Water-Soluble Conjugated Polymer

Zhihua Xu; Hsinhan Tsai; Hsing-Lin Wang; Mircea Cotlet

The solvent polarity effect on chain conformation, film morphology, and photophysical properties of a nonionic water-soluble conjugated polymer (WSCP), poly[2,5-bis(diethylaminetetraethylene glycol)phenylene vinylene] (DEATG-PPV) is investigated in detail. The combination of stationary absorption and photoluminescence (PL) spectroscopy, time-resolved PL spectroscopy, and fluorescence correlation spectroscopy methods enables us to probe the chain conformation of DEATG-PPV, down to the level of a single chain when working with extremely diluted solutions. The use of correlated atomic force microscopy and confocal fluorescence lifetime imaging microscopy measurements of drop-casted DEATG-PPV films reveals the intrinsic relationship between chain conformation, film morphology, and optical properties. Depending on solvent polarity, DEATG-PPV presents extended, coiled, and collapsed chain conformations in solutions, which lead to distinct morphology and optical properties in solid films. Our work presents a pathway to control and characterize the film morphologies of WSCPs toward the optimal performance of various optoelectronic devices.


Journal of Materials Chemistry C | 2014

Flexible memory devices with tunable electrical bistability via controlled energetics in donor–donor and donor–acceptor conjugated polymers

Hung-Ju Yen; Hsinhan Tsai; Cheng-Yu Kuo; Wanyi Nie; Aditya D. Mohite; Gautam Gupta; Jian Wang; Jia-Hao Wu; Guey-Sheng Liou; Hsing-Lin Wang

Flexible nonvolatile memory devices were fabricated from benzodithiophene-based donor–donor and donor–acceptor conjugated polymers with thermally/non-thermally recoverable memory behaviors.


Advanced Materials | 2018

Critical Role of Interface and Crystallinity on the Performance and Photostability of Perovskite Solar Cell on Nickel Oxide

Wanyi Nie; Hsinhan Tsai; Jean Christophe Blancon; Fangze Liu; Costas Stoumpos; Boubacar Traore; Mikaël Kepenekian; O. Durand; Claudine Katan; Sergei Tretiak; Jared Crochet; Pulickel M. Ajayan; Mercouri G. Kanatzidis; Jacky Even; Aditya D. Mohite

Hybrid perovskites are on a trajectory toward realizing the most efficient single-junction, solution-processed photovoltaic devices. However, a critical issue is the limited understanding of the correlation between the degree of crystallinity and the emergent perovskite/hole (or electron) transport layer on device performance and photostability. Here, the controlled growth of hybrid perovskites on nickel oxide (NiO) is shown, resulting in the formation of thin films with enhanced crystallinity with characteristic peak width and splitting reminiscent of the tetragonal phase in single crystals. Photophysical and interface sensitive measurements reveal a reduced trap density at the perovskite/NiO interface in comparison with perovskites grown on poly(3,4-ethylene dioxy thiophene) polystyrene sulfonate. Photovoltaic cells exhibit a high open circuit voltage (1.12 V), indicating a near-ideal energy band alignment. Moreover, photostability of photovoltaic devices up to 10-Suns is observed, which is a direct result of the superior crystallinity of perovskite thin films on NiO. These results elucidate the critical role of the quality of the perovskite/hole transport layer interface in rendering high-performance and photostable optoelectronic devices.

Collaboration


Dive into the Hsinhan Tsai's collaboration.

Top Co-Authors

Avatar

Wanyi Nie

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Sergei Tretiak

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aditya D. Mohite

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Claudine Katan

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jean-Christophe Blancon

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gautam Gupta

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jared Crochet

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge