Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hua Lou is active.

Publication


Featured researches published by Hua Lou.


Cellular and Molecular Life Sciences | 2008

Diverse molecular functions of Hu proteins

Melissa N. Hinman; Hua Lou

Abstract.Hu proteins are RNA-binding proteins involved in diverse biological processes. The neuronal members of the Hu family, HuB, HuC, and HuD play important roles in neuronal differentiation and plasticity, while the ubiquitously expressed family member, HuR, has numerous functions mostly related to cellular stress response. The pivotal roles of Hu proteins are dictated by their molecular functions affecting a large number of target genes. Hu proteins affect many post-transcriptional aspects of RNA metabolism, from splicing to translation. In this communication, we will focus on these molecular events and review our current understanding of how Hu proteins mediate them. In particular, emphasis will be put on the nuclear functions of these proteins, which were recently discovered. Three examples including calcitonin/calcitonin gene-related peptide, neurofibromatosis type 1, and Ikaros will be discussed in detail. In addition, an intriguing theme of antagonism between Hu proteins and other AU-rich sequence binding proteins will be discussed.


Molecular and Cellular Biology | 1999

Polypyrimidine tract-binding protein positively regulates inclusion of an alternative 3'-terminal exon.

Hua Lou; David M. Helfman; Robert F. Gagel; Susan M. Berget

ABSTRACT Polypyrimidine tract-binding protein (PTB) is an abundant vertebrate hnRNP protein. PTB binding sites have been found within introns both upstream and downstream of alternative exons in a number of genes that are negatively controlled by the binding of PTB. We have previously reported that PTB binds to a pyrimidine tract within an RNA processing enhancer located adjacent to an alternative 3′-terminal exon within the gene coding for calcitonin and calcitonin gene-related peptide. The enhancer consists of a pyrimidine tract and CAG directly abutting on a 5′ splice site sequence to form a pseudoexon. Here we show that the binding of PTB to the enhancer pyrimidine tract is functional in that exon inclusion increases when in vivo levels of PTB increase. This is the first example of positive regulation of exon inclusion by PTB. The binding of PTB was antagonistic to the binding of U2AF to the enhancer-located pyrimidine tract. Altering the enhancer pyrimidine tract to a consensus sequence for the binding of U2AF eliminated enhancement of exon inclusion in vivo and exon polyadenylation in vitro. An additional PTB binding site was identified close to the AAUAAA hexanucleotide sequence of the exon 4 poly(A) site. These observations suggest a dual role for PTB in facilitating recognition of exon 4: binding to the enhancer pyrimidine tract to interrupt productive recognition of the enhancer pseudoexon by splicing factors and interacting with the poly(A) site to positively affect polyadenylation.


Molecular and Cellular Biology | 2005

Recql5 and Blm RecQ DNA Helicases Have Nonredundant Roles in Suppressing Crossovers

Yiduo Hu; Xincheng Lu; Ellen Barnes; Min Yan; Hua Lou; Guangbin Luo

ABSTRACT In eukaryotes, crossovers in mitotic cells can have deleterious consequences and therefore must be suppressed. Mutations in BLM give rise to Bloom syndrome, a disease that is characterized by an elevated rate of crossovers and increased cancer susceptibility. However, simple eukaryotes such as Saccharomyces cerevisiae have multiple pathways for suppressing crossovers, suggesting that mammals also have multiple pathways for controlling crossovers in their mitotic cells. We show here that in mouse embryonic stem (ES) cells, mutations in either the Bloom syndrome homologue (Blm) or the Recql5 genes result in a significant increase in the frequency of sister chromatid exchange (SCE), whereas deleting both Blm and Recql5 lead to an even higher frequency of SCE. These data indicate that Blm and Recql5 have nonredundant roles in suppressing crossovers in mouse ES cells. Furthermore, we show that mouse embryonic fibroblasts derived from Recql5 knockout mice also exhibit a significantly increased frequency of SCE compared with the corresponding wild-type control. Thus, this study identifies a previously unknown Recql5-dependent, Blm-independent pathway for suppressing crossovers during mitosis in mice.


Journal of Biological Chemistry | 2007

Hu Proteins Regulate Polyadenylation by Blocking Sites Containing U-rich Sequences

Hui Zhu; Hua Lin Zhou; Robert A. Hasman; Hua Lou

A recent genome-wide bioinformatic analysis indicated that 54% of human genes undergo alternative polyadenylation. Although it is clear that differential selection of poly(A) sites can alter gene expression, resulting in significant biological consequences, the mechanisms that regulate polyadenylation are poorly understood. Here we report that the neuron-specific members of a family of RNA-binding proteins, Hu proteins, known to regulate mRNA stability and translation in the cytoplasm, play an important role in polyadenylation regulation. Hu proteins are homologs of the Drosophila embryonic lethal abnormal visual protein and contain three RNA recognition motifs. Using an in vitro polyadenylation assay with HeLa cell nuclear extract and recombinant Hu proteins, we have shown that Hu proteins selectively block both cleavage and poly(A) addition at sites containing U-rich sequences. Hu proteins have no effect on poly(A) sites that do not contain U-rich sequences or sites in which the U-rich sequences are mutated. All three RNA recognition motifs of Hu proteins are required for this activity. Overexpression of HuR in HeLa cells also blocks polyadenylation at a poly(A) signal that contains U-rich sequences. Hu proteins block the interaction between the polyadenylation cleavage stimulation factor 64-kDa subunit and RNA most likely through direct interaction with poly(A) cleavage stimulation factor 64-kDa subunit and cleavage and polyadenylation specificity factor 160-kDa subunit. These studies identify a novel group of mammalian polyadenylation regulators. Furthermore, they define a previously unknown nuclear function of Hu proteins.


Nucleic Acids Research | 2014

Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms

Hua Lin Zhou; Guangbin Luo; Jo Ann Wise; Hua Lou

The molecular mechanisms through which alternative splicing and histone modifications regulate gene expression are now understood in considerable detail. Here, we discuss recent studies that connect these two previously separate avenues of investigation, beginning with the unexpected discoveries that nucleosomes are preferentially positioned over exons and DNA methylation and certain histone modifications also show exonic enrichment. These findings have profound implications linking chromatin structure, histone modification and splicing regulation. Complementary single gene studies provided insight into the mechanisms through which DNA methylation and histones modifications modulate alternative splicing patterns. Here, we review an emerging theme resulting from these studies: RNA-guided mechanisms integrating chromatin modification and splicing. Several groundbreaking papers reported that small noncoding RNAs affect alternative exon usage by targeting histone methyltransferase complexes to form localized facultative heterochromatin. More recent studies provided evidence that pre-messenger RNA itself can serve as a guide to enable precise alternative splicing regulation via local recruitment of histone-modifying enzymes, and emerging evidence points to a similar role for long noncoding RNAs. An exciting challenge for the future is to understand the impact of local modulation of transcription elongation rates on the dynamic interplay between histone modifications, alternative splicing and other processes occurring on chromatin.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Hu proteins regulate alternative splicing by inducing localized histone hyperacetylation in an RNA-dependent manner

Hua Lin Zhou; Melissa N. Hinman; Victoria A. Barron; Cuiyu Geng; Guangjin Zhou; Guangbin Luo; Ruth E. Siegel; Hua Lou

Recent studies have provided strong evidence for a regulatory link among chromatin structure, histone modification, and splicing regulation. However, it is largely unknown how local histone modification patterns surrounding alternative exons are connected to differential alternative splicing outcomes. Here we show that splicing regulator Hu proteins can induce local histone hyperacetylation by association with their target sequences on the pre-mRNA surrounding alternative exons of two different genes. In both primary and mouse embryonic stem cell-derived neurons, histone hyperacetylation leads to an increased local transcriptional elongation rate and decreased inclusion of these exons. Furthermore, we demonstrate that Hu proteins interact with histone deacetylase 2 and inhibit its deacetylation activity. We propose that splicing regulators may actively modulate chromatin structure when recruited to their target RNA sequences cotranscriptionally. This “reaching back” interaction with chromatin provides a means to ensure accurate and efficient regulation of alternative splicing.


Molecular and Cellular Biology | 2003

U1 snRNP-dependent function of TIAR in the regulation of alternative RNA processing of the human calcitonin/CGRP pre-mRNA

Hui Zhu; Robert A. Hasman; Katherine M. Young; Nancy Kedersha; Hua Lou

ABSTRACT Alternative RNA processing of human calcitonin/CGRP pre-mRNA is regulated by an intronic enhancer element. Previous studies have demonstrated that multiple sequence motifs within the enhancer and a number of trans-acting factors play critical roles in the regulation. Here, we report the identification of TIAR as a novel player in the regulation of human calcitonin/CGRP alternative RNA processing. TIAR binds to the U tract sequence motif downstream of a pseudo 5′ splice site within the previously characterized intron enhancer element. Binding of TIAR promotes inclusion of the alternative 3′-terminal exon located more than 200 nucleotides upstream from the U tract. In cells that preferentially include this exon, overexpression of a mutant TIAR that lacks the RNA binding domains suppressed inclusion of this exon. In this report, we also demonstrate an unusual novel interaction between U6 snRNA and the pseudo 5′ splice site, which was shown previously to bind U1 snRNA. Interestingly, TIAR binding to the U tract sequence depends on the interaction of not only U1 but also U6 snRNA with the pseudo 5′ splice site. Conversely, TIAR binding promotes U6 snRNA binding to its target. The synergistic relationship between TIAR and U6 snRNA strongly suggests a novel role of U6 snRNP in regulated alternative RNA processing.


Molecular and Cellular Biology | 2008

Regulation of neuron-specific alternative splicing of neurofibromatosis type 1 pre-mRNA.

Hui Zhu; Melissa N. Hinman; Robert A. Hasman; Priyesh Mehta; Hua Lou

ABSTRACT Neurofibromatosis type 1 (NF1) is one of the most common heritable autosomal dominant disorders. Alternative splicing modulates the function of neurofibromin, the NF1 gene product, by inserting the in-frame exon 23a into the region of NF1 mRNA that encodes the GTPase-activating protein-related domain. This insertion, which is predominantly skipped in neurons, reduces the ability of neurofibromin to regulate Ras by 10-fold. Here, we report that the neuron-specific Hu proteins control the production of the short protein isoform by suppressing inclusion of NF1 exon 23a, while TIA-1/TIAR proteins promote inclusion of this exon. We identify two binding sites for Hu proteins, located upstream and downstream of the regulated exon, and provide biochemical evidence that Hu proteins specifically block exon definition by preventing binding of essential splicing factors. In vitro analyses using nuclear extracts show that at the downstream site, Hu proteins prevent binding of U1 and U6 snRNPs to the 5′ splice site, while TIAR increases binding. Hu proteins also decrease U2AF binding at the 3′ splice site located upstream of exon 23a. In addition to providing the first mechanistic insight into tissue-specific control of NF1 splicing, these studies establish a novel strategy whereby Hu proteins regulate RNA processing.


Molecular and Cellular Biology | 2007

Role for Fox-1/Fox-2 in Mediating the Neuronal Pathway of Calcitonin/Calcitonin Gene-Related Peptide Alternative RNA Processing

Hua Lin Zhou; Andrew P. Baraniak; Hua Lou

ABSTRACT Although multiple regulatory elements and protein factors are known to regulate the non-neuronal pathway of alternative processing of the calcitonin/calcitonin gene-related peptide (CGRP) pre-mRNA, the mechanisms controlling the neuron-specific pathway have remained elusive. Here we report the identification of Fox-1 and Fox-2 proteins as novel regulators that mediate the neuron-specific splicing pattern. Fox-1 and Fox-2 proteins function to repress exon 4 inclusion, and this effect depends on two UGCAUG elements surrounding the 3′ splice site of the calcitonin-specific exon 4. In neuron-like cells, mutation of a subset of UGCAUG elements promotes the non-neuronal pattern in which exon 4 is included. In HeLa cells, overexpression of Fox-1 or Fox-2 protein decreases exon 4 inclusion. Fox-1 and Fox-2 proteins interact with the UGCAUG elements specifically and regulate splicing by blocking U2AF65 binding to the 3′ splice site upstream of exon 4. We further investigated the inter-relationship between the UGCAUG silencer elements and the previously identified intronic and exonic splicing regulatory elements and found that exon 4 is regulated by an intricate balance of positive and negative regulation. These results define a critical role for Fox-1 and Fox-2 proteins in exon 4 inclusion of calcitonin/CGRP pre-mRNA and establish a regulatory network that controls the fate of exon 4.


Genes & Development | 2013

The p97–UBXD8 complex destabilizes mRNA by promoting release of ubiquitinated HuR from mRNP

Hua Lin Zhou; Cuiyu Geng; Guangbin Luo; Hua Lou

The assembly and disassembly of ribonucleoproteins (RNPs) are dynamic processes that control every step of RNA metabolism, including mRNA stability. However, our knowledge of how RNP remodeling is achieved is largely limited to RNA helicase functions. Here, we report a previously unknown mechanism that implicates the ATPase p97, a protein-remodeling machine, in the dynamic regulation of mRNP disassembly. We found that p97 and its cofactor, UBXD8, destabilize p21, MKP-1, and SIRT1, three established mRNA targets of the RNA-binding protein HuR, by promoting release of HuR from mRNA. Importantly, ubiquitination of HuR with a short K29 chain serves as the signal for release. When cells are subjected to stress conditions, the steady-state levels of HuR ubiquitination change, suggesting a new mechanism through which HuR mediates the stress response. Our studies reveal a new paradigm in RNA biology: nondegradative ubiquitin signaling-dependent disassembly of mRNP promoted by the p97-UBXD8 complex to control mRNA stability.

Collaboration


Dive into the Hua Lou's collaboration.

Top Co-Authors

Avatar

Guangbin Luo

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Melissa N. Hinman

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Alok Sharma

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hua Lin Zhou

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Hui Zhu

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Hieu Nguyen

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Robert A. Hasman

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Cuiyu Geng

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Guangjin Zhou

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Victoria A. Barron

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge