Hua Rong Lu
Janssen Pharmaceutica
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hua Rong Lu.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Oliver J. Britton; Alfonso Bueno-Orovio; Karel Van Ammel; Hua Rong Lu; Rob Towart; David J. Gallacher; Blanca Rodriguez
Significance Causes of intersubject variability in electrophysiological activity are unknown. We describe a methodology to unravel the ionic determinants of variability exhibited in experimental cardiac action potential recordings, based on the construction and calibration of populations of models. We show that 213 of 10,000 candidate models are consistent with the control experimental dataset. Ionic properties across the model population cover a wide range of values, and particular combinations of ionic properties determine shape, amplitude, and rate dependence of specific action potentials. Finally, we demonstrate that the calibrated model population quantitatively predicts effects caused by four concentrations of a potassium channel blocker. Cellular and ionic causes of variability in the electrophysiological activity of hearts from individuals of the same species are unknown. However, improved understanding of this variability is key to enable prediction of the response of specific hearts to disease and therapies. Limitations of current mathematical modeling and experimental techniques hamper our ability to provide insight into variability. Here, we describe a methodology to unravel the ionic determinants of intersubject variability exhibited in experimental recordings, based on the construction and calibration of populations of models. We illustrate the methodology through its application to rabbit Purkinje preparations, because of their importance in arrhythmias and safety pharmacology assessment. We consider a set of equations describing the biophysical processes underlying rabbit Purkinje electrophysiology, and we construct a population of over 10,000 models by randomly assigning specific parameter values corresponding to ionic current conductances and kinetics. We calibrate the model population by closely comparing simulation output and experimental recordings at three pacing frequencies. We show that 213 of the 10,000 candidate models are fully consistent with the experimental dataset. Ionic properties in the 213 models cover a wide range of values, including differences up to ±100% in several conductances. Partial correlation analysis shows that particular combinations of ionic properties determine the precise shape, amplitude, and rate dependence of specific action potentials. Finally, we demonstrate that the population of models calibrated using data obtained under physiological conditions quantitatively predicts the action potential duration prolongation caused by exposure to four concentrations of the potassium channel blocker dofetilide.
Journal of Pharmacological and Toxicological Methods | 2013
Hua Rong Lu; Gan-Xin Yan; David J. Gallacher
INTRODUCTION In the present study, we investigated whether a new biomarker - index of cardiac electrophysiological balance (iCEB=QT/QRS) - could predict drug-induced cardiac arrhythmias (CAs), including ventricular tachycardia/ventricular fibrillation (VT/VF) and Torsades de Pointes (TdPs). METHODS The rabbit left ventricular arterially-perfused-wedge was used to investigate whether the simple iCEB measured from the ECG is reflective of the more difficult measurement of λ (effective refractory period×conduction velocity) for predicting CAs induced by a number of drugs. RESULTS Dofetilide concentration-dependently increased iCEB and λ, predicting potential risk of drug-induced incidence of early afterdepolarizations (EADs) starting at 0.01μM. Digoxin (1 and 5μM), encainide (5 and 20μM) and propoxyphene (10 and 100μM) markedly reduced both iCEB and λ, predicting their ability to induce non-TdP-like VT/VF. At 10μM, both NS1643 and levcromakalim significantly decreased λ and iCEB, which was preceded with presence of non-TdP-like VT/VF. Isoprenaline (0.05 to 0.5μM) significantly reduced both λ and iCEB, which was associated with a high incidence of non-TdP-like VT/VF in most preparations. Other biomarkers (i.e. transmural dispersion of T-wave and instability of the QT interval) predicted only dofetilide-induced long QT and EADs, but did not predict drug-induced risk of non-TdP-like VT/VF. DISCUSSION Our data from 7 reference drugs of known pro-arrhythmic effects suggests that 1) this non-invasive iCEB predicts potential risk of drug-induced CAs beyond long QT and TdP; 2) iCEB is more useful than the current biomarkers (i.e. transmural dispersion and instability) in predicting potential risks for drug-induced non-TdP-like VT/VF.
Frontiers in Physiology | 2017
Elisa Passini; Oliver J. Britton; Hua Rong Lu; Jutta Rohrbacher; An N. Hermans; David J. Gallacher; Robert J.H. Greig; Alfonso Bueno-Orovio; Blanca Rodriguez
Early prediction of cardiotoxicity is critical for drug development. Current animal models raise ethical and translational questions, and have limited accuracy in clinical risk prediction. Human-based computer models constitute a fast, cheap and potentially effective alternative to experimental assays, also facilitating translation to human. Key challenges include consideration of inter-cellular variability in drug responses and integration of computational and experimental methods in safety pharmacology. Our aim is to evaluate the ability of in silico drug trials in populations of human action potential (AP) models to predict clinical risk of drug-induced arrhythmias based on ion channel information, and to compare simulation results against experimental assays commonly used for drug testing. A control population of 1,213 human ventricular AP models in agreement with experimental recordings was constructed. In silico drug trials were performed for 62 reference compounds at multiple concentrations, using pore-block drug models (IC50/Hill coefficient). Drug-induced changes in AP biomarkers were quantified, together with occurrence of repolarization/depolarization abnormalities. Simulation results were used to predict clinical risk based on reports of Torsade de Pointes arrhythmias, and further evaluated in a subset of compounds through comparison with electrocardiograms from rabbit wedge preparations and Ca2+-transient recordings in human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs). Drug-induced changes in silico vary in magnitude depending on the specific ionic profile of each model in the population, thus allowing to identify cell sub-populations at higher risk of developing abnormal AP phenotypes. Models with low repolarization reserve (increased Ca2+/late Na+ currents and Na+/Ca2+-exchanger, reduced Na+/K+-pump) are highly vulnerable to drug-induced repolarization abnormalities, while those with reduced inward current density (fast/late Na+ and Ca2+ currents) exhibit high susceptibility to depolarization abnormalities. Repolarization abnormalities in silico predict clinical risk for all compounds with 89% accuracy. Drug-induced changes in biomarkers are in overall agreement across different assays: in silico AP duration changes reflect the ones observed in rabbit QT interval and hiPS-CMs Ca2+-transient, and simulated upstroke velocity captures variations in rabbit QRS complex. Our results demonstrate that human in silico drug trials constitute a powerful methodology for prediction of clinical pro-arrhythmic cardiotoxicity, ready for integration in the existing drug safety assessment pipelines.
Europace | 2016
Blanca Rodriguez; Annamaria Carusi; Najah Abi-Gerges; Rina Ariga; Oliver J. Britton; Gil Bub; Alfonso Bueno-Orovio; Rebecca A.B. Burton; Valentina Carapella; Louie Cardone-Noott; Matthew J. Daniels; Mark Davies; Sara Dutta; Andre Ghetti; Vicente Grau; Stephen C. Harmer; Ivan Kopljar; Pier D. Lambiase; Hua Rong Lu; Aurore Lyon; Ana Mincholé; Anna Muszkiewicz; Julien Oster; Michelangelo Paci; Elisa Passini; Stefano Severi; Peter Taggart; Andrew Tinker; Jean-Pierre Valentin; András Varró
Both biomedical research and clinical practice rely on complex datasets for the physiological and genetic characterization of human hearts in health and disease. Given the complexity and variety of approaches and recordings, there is now growing recognition of the need to embed computational methods in cardiovascular medicine and science for analysis, integration and prediction. This paper describes a Workshop on Computational Cardiovascular Science that created an international, interdisciplinary and inter-sectorial forum to define the next steps for a human-based approach to disease supported by computational methodologies. The main ideas highlighted were (i) a shift towards human-based methodologies, spurred by advances in new in silico, in vivo, in vitro, and ex vivo techniques and the increasing acknowledgement of the limitations of animal models. (ii) Computational approaches complement, expand, bridge, and integrate in vitro, in vivo, and ex vivo experimental and clinical data and methods, and as such they are an integral part of human-based methodologies in pharmacology and medicine. (iii) The effective implementation of multi- and interdisciplinary approaches, teams, and training combining and integrating computational methods with experimental and clinical approaches across academia, industry, and healthcare settings is a priority. (iv) The human-based cross-disciplinary approach requires experts in specific methodologies and domains, who also have the capacity to communicate and collaborate across disciplines and cross-sector environments. (v) This new translational domain for human-based cardiology and pharmacology requires new partnerships supported financially and institutionally across sectors. Institutional, organizational, and social barriers must be identified, understood and overcome in each specific setting.
Stem Cells Translational Medicine | 2016
Ivan Kopljar; David J. Gallacher; An De Bondt; Laure Cougnaud; Eddy Vlaminckx; Ilse Van den Wyngaert; Hua Rong Lu
Histone deacetylase (HDAC) inhibitors possess therapeutic potential to reverse aberrant epigenetic changes associated with cancers, neurological diseases, and immune disorders. Unfortunately, clinical studies with some HDAC inhibitors displayed delayed cardiac adverse effects, such as atrial fibrillation and ventricular tachycardia. However, the underlying molecular mechanism(s) of HDAC inhibitor‐mediated cardiotoxicity remains poorly understood and is difficult to detect in the early stages of preclinical drug development because of a delayed onset of effects. In the present study, we show for the first time in human induced pluripotent stem cell‐derived cardiomyocytes (hiPS‐CMs) that HDAC inhibitors (dacinostat, panobinostat, vorinostat, entinostat, and tubastatin‐a) induce delayed dose‐related cardiac dysfunction at therapeutic concentrations associated with cardiac adverse effects in humans. HDAC inhibitor‐mediated delayed effects on the beating properties of hiPS‐CMs developed after 12 hours by decreasing the beat rate, shortening the field potential duration, and inducing arrhythmic behavior under form of sustained contractions and fibrillation‐like patterns. Transcriptional changes that are common between the cardiotoxic HDAC inhibitors but different from noncardiotoxic treatments identified cardiac‐specific genes and pathways related to structural and functional changes in cardiomyocytes. Combining the functional data with epigenetic changes in hiPS‐CMs allowed us to identify molecular targets that might explain HDAC inhibitor‐mediated cardiac adverse effects in humans. Therefore, hiPS‐CMs represent a valuable translational model to assess HDAC inhibitor‐mediated cardiotoxicity and support identification of better HDAC inhibitors with an improved benefit‐risk profile.
British Journal of Pharmacology | 2012
G Eichenbaum; Michael K. Pugsley; David J. Gallacher; R Towart; G McIntyre; U Shukla; Jm Davenport; Hua Rong Lu; J Rohrbacher; V Hillsamer
JNJ‐Q2, a novel broad‐spectrum fluoroquinolone with anti‐methicillin‐resistant Staphylococcus aureus activity, was evaluated in a comprehensive set of non‐clinical and clinical cardiovascular safety studies. The effect of JNJ‐Q2 on different cardiovascular parameters was compared with that of moxifloxacin, sparfloxacin and ofloxacin. Through comparisons with these well‐known fluoroquinolones, the importance of effects on compensatory ion channels to the cardiovascular safety of JNJ‐Q2 was investigated.
Journal of Pharmacological and Toxicological Methods | 2012
Hua Rong Lu; Eddy Vlaminckx; Frank Cools; David J. Gallacher
INTRODUCTION The aim of the present study was to evaluate direct/acute effects of arsenic trioxide on action potentials (APs) in isolated cardiac tissues, and to investigate if the choice of species and tissue and the duration of the perfusion play a role in arsenic-induced acute/direct prolongation of AP/QT. METHODS AND RESULTS Direct electrophysiological effects of arsenic trioxide were measured in cardiac tissues isolated from four different species using micro-electrode recording. Arsenic (after 30 to 95 min perfusion at 10 μM) significantly prolonged APD(90), increased triangulation of the AP and elicited early afterdepolarizations (EADs) only in isolated guinea-pig and dog Purkinje fibers but not in rabbit and porcine (minipig) Purkinje fibers. Arsenic induced a prolongation of the APD(90) and increases in triangulation and the occurrence of EADs was not observed in papillary muscles of guinea-pigs and rabbits. Arsenic at 4 increasing concentrations from 0.1 μM to 10 μM at the standard perfusion-time of 15 min per concentration, and after a continuous 90-min perfusion at 1 μM and 1 Hz did not induce these direct effects on APD(90), triangulation and EADs in isolated guinea-pig Purkinje fibers, but it at 1 µM elicited EADs in 2 out of 7 preparations after 90 min at 0.2 Hz. DISCUSSION The present study demonstrates that the choice of species and cardiac tissue as well as perfusion-time play important roles in arsenic-induced direct/acute effects on APD(90) and induction of EADs in vitro.
British Journal of Pharmacology | 2017
Ivan Kopljar; An De Bondt; Petra Vinken; Ard Teisman; Bruce Damiano; Nick Goeminne; Ilse Van den Wyngaert; David J. Gallacher; Hua Rong Lu
In the pharmaceutical industry risk assessments of chronic cardiac safety liabilities are mostly performed during late stages of preclinical drug development using in vivo animal models. Here, we explored the potential of human induced pluripotent stem cell‐derived cardiomyocytes (hiPS‐CMs) to detect chronic cardiac risks such as drug‐induced cardiomyocyte toxicity.
Thrombosis and Haemostasis | 2008
H. Roger Lijnen; Berthe Van Hoef; Hua Rong Lu; David J. Gallacher
The effect of rofecoxib (Vioxx), a cyclooxygenase (COX)-2 inhibitor, on adipose tissue development was studied in a murine model of diet-induced obesity. Oral administration of Vioxx for six weeks (34 mg/kg/day) to C57Bl/6 mice kept on high-fat diet (n = 19) resulted in a significant reduction in total body weight (p < 0.01) and of subcutaneous (p < 0.05) and gonadal (p < 0.01) adipose tissue mass, as compared to placebo-treated animals (n = 21). There was no significant difference in food intake between both groups (2.8 +/- 0.09 vs. 3.0 +/- 0.10 g/day; p = 0.20). Administration of Vioxx resulted in reduced total cholesterol and high-density lipoprotein (HDL) cholesterol levels (p < 0.0001) and in enhanced levels of liver enzymes, as compared to place-bo. In the gonadal but not in the subcutaneous adipose tissue, adipocytes were smaller after Vioxx treatment (p < 0.05). The macrophage content was significantly lower in gonadal adipose tissues of Vioxx-treated mice (p < 0.05), but not in the subcutaneous adipose tissues. This was, however, not associated with differences in adipose tissue levels of the pro-inflammatory tumor necrosis factor (TNF)-alpha. Blood vessel size or density in either fat pad were not affected by Vioxx treatment. Thus, in a nutritionally induced murine obesity model, oral administration of Vioxx, as compared to placebo, resulted in reduced adipose tissue development, associated with lower feeding efficiency and smaller adipocytes.
Journal of Pharmacological and Toxicological Methods | 2016
Hua Rong Lu; David J. Gallacher; Gan-Xin Yan
In the present study, we investigated an impact of the stimulation rate on the detection of the proarrhythmic potential of 10 reference compounds with effects on different cardiac ion channels in the isolated arterially-perfused rabbit left ventricular wedge preparation. The compounds were tested in the wedge model using two distinct protocols; including baseline stimulation at 1-Hz followed by a brief period at 0.5-Hz, either without an additional brief period of 2-Hz stimulation (i.e. Protocol 1) or with 2-Hz stimulation (i.e. Protocol 2). As expected, QT-prolonging drugs (ibutilide and quinidine) prolonged the QT interval, similarly increased the Torsades de Pointes (TdP) score, and elicited early afterdepolarizations (EADs) in both protocols. HMR1556 and JNJ-303 (IKs blockers) also prolonged the QT interval up to 1μM similarly in both protocols. Nifedipine (Ca(2+) antagonist) shortened the QT interval, and reduced force of contraction similarly in both protocols. However, Na(+) channel blockers (Ia, Ib, Ic) widened the QRS duration more in Protocol 2 than in Protocol 1. Furthermore, it was only possible to detect non-TdP-like ventricular tachycardia/fibrillation (VT/VF) induced by Na(+) blockers and by QT-shortening drugs (levcromakalim and mallotoxin) using the 2-Hz stimulation (Protocol 2). Our data suggest that the inclusion of a brief period of fast stimulation at 2Hz is critical for detecting drug-induced slowing of conduction (QRS widening), QT shortening and associated (non-TdP-like) VT/VF, which are distinct from the QT prolongation/TdP proarrhythmia in isolated, arterially-perfused rabbit left ventricular wedges.