Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hua Tang Chen is active.

Publication


Featured researches published by Hua Tang Chen.


Nature Cell Biology | 2002

DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1

Oscar Fernandez-Capetillo; Hua Tang Chen; Arkady Celeste; Irene M. Ward; Peter J. Romanienko; Julio C. Morales; Kazuhito Naka; Zhengfang Xia; R. Daniel Camerini-Otero; Noboru Motoyama; Phillip B. Carpenter; William M. Bonner; Junjie Chen; André Nussenzweig

Activation of the ataxia telangiectasia mutated (ATM) kinase triggers diverse cellular responses to ionizing radiation (IR), including the initiation of cell cycle checkpoints. Histone H2AX, p53 binding-protein 1 (53BP1) and Chk2 are targets of ATM-mediated phosphorylation, but little is known about their roles in signalling the presence of DNA damage. Here, we show that mice lacking either H2AX or 53BP1, but not Chk2, manifest a G2–M checkpoint defect close to that observed in ATM−/− cells after exposure to low, but not high, doses of IR. Moreover, H2AX regulates the ability of 53BP1 to efficiently accumulate into IR-induced foci. We propose that at threshold levels of DNA damage, H2AX-mediated concentration of 53BP1 at double-strand breaks is essential for the amplification of signals that might otherwise be insufficient to prevent entry of damaged cells into mitosis.


Nature | 2000

DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation.

Michael J. Difilippantonio; Jie Zhu; Hua Tang Chen; Eric Meffre; Michel C. Nussenzweig; Edward E. Max; Thomas Ried; André Nussenzweig

Cancer susceptibility genes have been classified into two groups: gatekeepers and caretakers. Gatekeepers are genes that control cell proliferation and death, whereas caretakers are DNA repair genes whose inactivation leads to genetic instability. Abrogation of both caretaker and gatekeeper function markedly increases cancer susceptibility. Although the importance of Ku80 in DNA double-strand break repair is well established, neither Ku80 nor other components of the non-homologous end-joining pathway are known to have a caretaker role in maintaining genomic stability. Here we show that mouse cells deficient for Ku80 display a marked increase in chromosomal aberrations, including breakage, translocations and aneuploidy. Despite the observed chromosome instabilities, Ku80-/- mice have only a slightly earlier onset of cancer. Loss of p53 synergizes with Ku80 to promote tumorigenesis such that all Ku80-/-p53-/- mice succumb to disseminated pro-B-cell lymphoma before three months of age. Tumours result from a specific set of chromosomal translocations and gene amplifications involving IgH and c-Myc, reminiscent of Burkitts lymphoma. We conclude that Ku80 is a caretaker gene that maintains the integrity of the genome by a mechanism involving the suppression of chromosomal rearrangements.


Nature | 2001

AID is required to initiate Nbs1/γ-H2AX focus formation and mutations at sites of class switching

Simone Petersen; Rafael Casellas; Bernardo Reina-San-Martin; Hua Tang Chen; Michael J. Difilippantonio; Patrick C. Wilson; Leif Hanitsch; Arkady Celeste; Masamichi Muramatsu; Duane R. Pilch; Christophe E. Redon; Thomas Ried; William M. Bonner; Tasuku Honjo; Michel C. Nussenzweig; André Nussenzweig

Class switch recombination (CSR) is a region-specific DNA recombination reaction that replaces one immunoglobulin heavy-chain constant region (Ch) gene with another. This enables a single variable (V) region gene to be used in conjunction with different downstream Ch genes, each having a unique biological activity. The molecular mechanisms that mediate CSR have not been defined, but activation-induced cytidine deaminase (AID), a putative RNA-editing enzyme, is required for this reaction. Here we report that the Nijmegen breakage syndrome protein (Nbs1) and phosphorylated H2A histone family member X (γ-H2AX, also known as γ-H2afx), which facilitate DNA double-strand break (DSB) repair, form nuclear foci at the Ch region in the G1 phase of the cell cycle in cells undergoing CSR, and that switching is impaired in H2AX-/- mice. Localization of Nbs1 and γ-H2AX to the Igh locus during CSR is dependent on AID. In addition, AID is required for induction of switch region (Sµ)-specific DNA lesions that precede CSR. These results place AID function upstream of the DNA modifications that initiate CSR.


Cell | 2008

AID Is Required for the Chromosomal Breaks in c-myc that Lead to c-myc/IgH Translocations

Davide F. Robbiani; Anne Bothmer; Elsa Callen; Bernardo Reina-San-Martin; Yair Dorsett; Simone Difilippantonio; Daniel J. Bolland; Hua Tang Chen; Anne E. Corcoran; André Nussenzweig; Michel C. Nussenzweig

Chromosomal translocation requires formation of paired double-strand DNA breaks (DSBs) on heterologous chromosomes. One of the most well characterized oncogenic translocations juxtaposes c-myc and the immunoglobulin heavy-chain locus (IgH) and is found in Burkitts lymphomas in humans and plasmacytomas in mice. DNA breaks in IgH leading to c-myc/IgH translocations are created by activation-induced cytidine deaminase (AID) during antibody class switch recombination or somatic hypermutation. However, the source of DNA breaks at c-myc is not known. Here, we provide evidence for the c-myc promoter region being required in targeting AID-mediated DNA damage to produce DSBs in c-myc that lead to c-myc/IgH translocations in primary B lymphocytes. Thus, in addition to producing somatic mutations and DNA breaks in antibody genes, AID is also responsible for the DNA lesions in oncogenes that are required for their translocation.


Nature | 2006

Role of genomic instability and p53 in AID-induced c-myc-Igh translocations

Almudena R. Ramiro; Mila Jankovic; Elsa Callen; Simone Difilippantonio; Hua Tang Chen; Kevin M. McBride; Thomas R. Eisenreich; Junjie Chen; Ross A. Dickins; Scott W. Lowe; André Nussenzweig; Michel C. Nussenzweig

Chromosomal translocations involving the immunoglobulin switch region are a hallmark feature of B-cell malignancies. However, little is known about the molecular mechanism by which primary B cells acquire or guard against these lesions. Here we find that translocations between c-myc and the IgH locus (Igh) are induced in primary B cells within hours of expression of the catalytically active form of activation-induced cytidine deaminase (AID), an enzyme that deaminates cytosine to produce uracil in DNA. Translocation also requires uracil DNA glycosylase (UNG), which removes uracil from DNA to create abasic sites that are then processed to double-strand breaks. The pathway that mediates aberrant joining of c-myc and Igh differs from intrachromosomal repair during immunoglobulin class switch recombination in that it does not require histone H2AX, p53 binding protein 1 (53BP1) or the non-homologous end-joining protein Ku80. In addition, translocations are inhibited by the tumour suppressors ATM, Nbs1, p19 (Arf) and p53, which is consistent with activation of DNA damage- and oncogenic stress-induced checkpoints during physiological class switching. Finally, we demonstrate that accumulation of AID-dependent, IgH-associated chromosomal lesions is not sufficient to enhance c-myc–Igh translocations. Our findings reveal a pathway for surveillance and protection against AID-dependent DNA damage, leading to chromosomal translocations.


Nature | 2008

53BP1 facilitates long-range DNA end-joining during V(D)J recombination.

Simone Difilippantonio; Eric J. Gapud; Nancy Wong; Ching-Yu Huang; Grace K. Mahowald; Hua Tang Chen; Michael J. Kruhlak; Elsa Callen; Ferenc Livak; Michel C. Nussenzweig; Barry P. Sleckman; André Nussenzweig

Variable, diversity and joining (V(D)J) recombination and class-switch recombination use overlapping but distinct non-homologous end joining pathways to repair DNA double-strand-break intermediates. 53BP1 is a DNA-damage-response protein that is rapidly recruited to sites of chromosomal double-strand breaks, where it seems to function in a subset of ataxia telangiectasia mutated (ATM) kinase-, H2A histone family member X (H2AX, also known as H2AFX)- and mediator of DNA damage checkpoint 1 (MDC1)-dependent events. A 53BP1-dependent end-joining pathway has been described that is dispensable for V(D)J recombination but essential for class-switch recombination. Here we report a previously unrecognized defect in the joining phase of V(D)J recombination in 53BP1-deficient lymphocytes that is distinct from that found in classical non-homologous-end-joining-, H2ax-, Mdc1- and Atm-deficient mice. Absence of 53BP1 leads to impairment of distal V–DJ joining with extensive degradation of unrepaired coding ends and episomal signal joint reintegration at V(D)J junctions. This results in apoptosis, loss of T-cell receptor α locus integrity and lymphopenia. Further impairment of the apoptotic checkpoint causes propagation of lymphocytes that have antigen receptor breaks. These data suggest a more general role for 53BP1 in maintaining genomic stability during long-range joining of DNA breaks.


Journal of Experimental Medicine | 2002

Evidence for Replicative Repair of DNA Double-Strand Breaks Leading to Oncogenic Translocation and Gene Amplification

Michael J. Difilippantonio; Simone Petersen; Hua Tang Chen; Roger D. Johnson; Maria Jasin; Roland Kanaar; Thomas Ried; André Nussenzweig

Nonreciprocal translocations and gene amplifications are commonly found in human tumors. Although little is known about the mechanisms leading to such aberrations, tissue culture models predict that they can arise from DNA breakage, followed by cycles of chromatid fusion, asymmetric mitotic breakage, and replication. Mice deficient in both a nonhomologous end joining (NHEJ) DNA repair protein and the p53 tumor suppressor develop lymphomas at an early age harboring amplification of an IgH/c-myc fusion. Here we report that these chromosomal rearrangements are initiated by a recombination activating gene (RAG)-induced DNA cleavage. Subsequent DNA repair events juxtaposing IgH and c-myc are mediated by a break-induced replication pathway. Cycles of breakage-fusion-bridge result in amplification of IgH/c-myc while chromosome stabilization occurs through telomere capture. Thus, mice deficient in NHEJ provide excellent models to study the etiology of unbalanced translocations and amplification events during tumorigenesis.


Cell | 2013

Identification of Early Replicating Fragile Sites that Contribute to Genome Instability

Jacqueline H. Barlow; Robert B. Faryabi; Elsa Callen; Nancy Wong; Amy Malhowski; Hua Tang Chen; Gustavo Gutierrez-Cruz; Hong-Wei Sun; Peter J. McKinnon; George E. Wright; Rafael Casellas; Davide F. Robbiani; Louis M. Staudt; Oscar Fernandez-Capetillo; André Nussenzweig

DNA double-strand breaks (DSBs) in B lymphocytes arise stochastically during replication or as a result of targeted DNA damage by activation-induced cytidine deaminase (AID). Here we identify recurrent, early replicating, and AID-independent DNA lesions, termed early replication fragile sites (ERFSs), by genome-wide localization of DNA repair proteins in B cells subjected to replication stress. ERFSs colocalize with highly expressed gene clusters and are enriched for repetitive elements and CpG dinucleotides. Although distinct from late-replicating common fragile sites (CFS), the stability of ERFSs and CFSs is similarly dependent on the replication-stress response kinase ATR. ERFSs break spontaneously during replication, but their fragility is increased by hydroxyurea, ATR inhibition, or deregulated c-Myc expression. Moreover, greater than 50% of recurrent amplifications/deletions in human diffuse large B cell lymphoma map to ERFSs. In summary, we have identified a source of spontaneous DNA lesions that drives instability at preferred genomic sites.


Journal of Experimental Medicine | 2004

ATM Is Required for Efficient Recombination between Immunoglobulin Switch Regions

Bernardo Reina-San-Martin; Hua Tang Chen; André Nussenzweig; Michel C. Nussenzweig

Ataxia telangiectasia mutated (ATM) kinase is critical for initiating the signaling pathways that lead to cell cycle checkpoints and DNA double strand break repair. In the absence of ATM, humans and mice show a primary immunodeficiency that includes low serum antibody titers, but the role of ATM in antigen-driven immunoglobulin gene diversification has not been defined. Here, we show that although ATM is dispensable for somatic hypermutation, it is required for efficient class switch recombination (CSR). The defect in CSR is not due to alterations in switch region transcription, accessibility, DNA damage checkpoint protein recruitment, or short-range intra-switch region recombination. Only long-range inter-switch recombination is defective, indicating an unexpected role for ATM in switch region synapsis during CSR.


Cell | 2013

53BP1 mediates productive and mutagenic DNA repair through distinct phosphoprotein interactions

Elsa Callen; Michela Di Virgilio; Michael J. Kruhlak; Maria Nieto-Soler; Nancy Wong; Hua Tang Chen; Robert B. Faryabi; Federica Polato; Margarida Almeida Santos; Linda M. Starnes; Duane R. Wesemann; Ji-Eun Lee; Anthony T. Tubbs; Barry P. Sleckman; Jeremy A. Daniel; Kai Ge; Frederick W. Alt; Oscar Fernandez-Capetillo; Michel C. Nussenzweig; André Nussenzweig

The DNA damage response (DDR) protein 53BP1 protects DNA ends from excessive resection in G1, and thereby favors repair by nonhomologous end-joining (NHEJ) as opposed to homologous recombination (HR). During S phase, BRCA1 antagonizes 53BP1 to promote HR. The pro-NHEJ and antirecombinase functions of 53BP1 are mediated in part by RIF1, the only known factor that requires 53BP1 phosphorylation for its recruitment to double-strand breaks (DSBs). Here, we show that a 53BP1 phosphomutant, 53BP18A, comprising alanine substitutions of the eight most N-terminal S/TQ phosphorylation sites, mimics 53BP1 deficiency by restoring genome stability in BRCA1-deficient cells yet behaves like wild-type 53BP1 with respect to immunoglobulin class switch recombination (CSR). 53BP18A recruits RIF1 but fails to recruit the DDR protein PTIP to DSBs, and disruption of PTIP phenocopies 53BP18A. We conclude that 53BP1 promotes productive CSR and suppresses mutagenic DNA repair through distinct phosphodependent interactions with RIF1 and PTIP.

Collaboration


Dive into the Hua Tang Chen's collaboration.

Top Co-Authors

Avatar

André Nussenzweig

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michel C. Nussenzweig

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Elsa Callen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Nancy Wong

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Arkady Celeste

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Ried

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

William M. Bonner

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Barry P. Sleckman

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Kai Ge

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge