Hua-Yang Liao
Academia Sinica
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hua-Yang Liao.
Dental Materials | 2011
Shu-Tuan Yeh; Hao-Ting Wang; Hua-Yang Liao; Shun-Lian Su; Che-Chen Chang; Hung-Chan Kao; Bor-Shiunn Lee
OBJECTIVES Application of acidulated phosphate fluoride (APF) gels has long been considered to cause deterioration of composite surfaces. The aims of this study were to demonstrate that nanocomposite surfaces were not affected by some APF gels and to investigate the possible underlying mechanisms. METHODS The elemental composition and viscosity of 3 acidulated phosphate fluoride (APF) agents (60 Second Taste Gel, Topex, and Zap) and 1 neutral fluoride agent (pH7 Gel) were analyzed. Subsequently, 320 specimens of 3 nanocomposites (Premisa, Filtek Z350, and Grandio) and a microhybrid composite (Estelite Sigma) with 80 specimens for each composite were randomly divided into 5 groups (n=16) and treated with 4 fluoride gels as well as distilled water which served as the control. Fluoride gels were applied on composite resin surfaces 4 times, 30 min each time. The roughness and microhardness were measured after treatments. Qualitative examination of the surface degradation of the composites was carried out with Fourier transforming infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). RESULTS Topex and Zap did not cause surface changes of composite resins, the possible reason being ascribed to the presence of magnesium aluminum silicate (MAS) clays. In contrast, 60 Second Taste Gel treatments caused significant roughness increase, microhardness decrease, more prominent filler dissolution, and IR spectral changes of Premisa, Filtek Z350, and Grandio. Estelite Sigma was less affected by the 4 fluoride gels. SIGNIFICANCE The composite surfaces were not affected by Topex or Zap even after extended treatments. These two APF gels may be more suitable for clinical applications.
Langmuir | 2014
Jiun-Hao Lin; Hsun-Yun Chang; Wei-Lun Kao; Kang-Yi Lin; Hua-Yang Liao; Yun-Wen You; Yu-Ting Kuo; Ding-Yuan Kuo; Kuo-Jui Chu; Yi-Hsuan Chu; Jing-Jong Shyue
Extracellular matrix (ECM) proteins, such as fibronectin, laminin, and collagen IV, play important roles in many cellular behaviors, including cell adhesion and spreading. Understanding their adsorption behavior on surfaces with different natures is helpful for studying the cellular responses to environments. By tailoring the chemical composition in binary acidic (anionic) and basic (cationic) functionalized self-assembled monolayer (SAM)-modified gold substrates, variable surface potentials can be generated. To examine how surface potential affects the interaction between ECM proteins and substrates, a quartz crystal microbalance with dissipation detection (QCM-D) was used. To study the interaction under physiological conditions, the ionic strength and pH were controlled using phosphate-buffered saline at 37 °C, and the ζ potentials of the SAM-modified Au and protein were determined using an electrokinetic analyzer and phase analysis light scattering, respectively. During adsorption processes, the shifts in resonant frequency (f) and energy dissipation (D) were acquired simultaneously, and the weight change was calculated using the Kelvin-Voigt model. The results reveal that slightly charged protein can be adsorbed on a highly charged SAM, even where both surfaces are negatively charged. This behavior is attributed to the highly charged SAM, which polarizes the protein microscopically, and the Debye interaction, as well as other short-range interactions such as steric force, hydrogen bonding, direct bonding, charged domains within the protein structure, etc., that allow adsorption, although the macroscopic electrostatic interaction discourages adsorption. For surfaces with a moderate potential, proteins are not significantly polarized by the surface, and the interaction can be predicted through simple electrostatic attraction. Furthermore, surface-induced self-assembly of protein molecules also affects the adsorbed structures and kinetics. The adsorbed layer properties, such as rigidity and packing behaviors, were further investigated using the D-f plot and phase detection microscopy (PDM) imaging.
Analytica Chimica Acta | 2012
Chi-Jen Chang; Hsun-Yun Chang; Yun-Wen You; Hua-Yang Liao; Yu-Ting Kuo; Wei-Lun Kao; Guo-Ji Yen; Meng-Hung Tsai; Jing-Jong Shyue
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) using pulsed C(60)(+) primary ions is a promising technique for analyzing biological specimens with high surface sensitivities. With molecular secondary ions of high masses, multiple molecules can be identified simultaneously without prior separation or isotope labeling. Previous reports using the C(60)(+) primary ion have been based on static-SIMS, which makes depth profiling complicated. Therefore, a dynamic-SIMS technique is reported here. Mixed peptides in the cryoprotectant trehalose were used as a model for evaluating the parameters that lead to the parallel detection and quantification of biomaterials. Trehalose was mixed separately with different concentrations of peptides. The peptide secondary ion intensities (normalized with respect to those of trehalose) were directly proportional to their concentration in the matrix (0.01-2.5 mol%). Quantification curves for each peptide were generated by plotting the percentage of peptides in trehalose versus the normalized SIMS intensities. Using these curves, the parallel detection, identification, and quantification of multiple peptides was achieved. Low energy Ar(+) was used to co-sputter and ionize the peptide-doped trehalose sample to suppress the carbon deposition associated with C(60)(+) bombardment, which suppressed the ion intensities during the depth profiling. This co-sputtering technique yielded steadier molecular ion intensities than when using a single C(60)(+) beam. In other words, co-sputtering is suitable for the depth profiling of thick specimens. In addition, the smoother surface generated by co-sputtering yielded greater depth resolution than C(60)(+) sputtering. Furthermore, because C(60)(+) is responsible for generating the molecular ions, the dosage of the auxiliary Ar(+) does not significantly affect the quantification curves.
Rapid Communications in Mass Spectrometry | 2011
Yun-Wen You; Hsun-Yun Chang; Wei-Chun Lin; Che-Hung Kuo; Szu-Hsian Lee; Wei-Lun Kao; Guo-Ji Yen; Chi-Jen Chang; Chi-Ping Liu; Chih-Chieh Huang; Hua-Yang Liao; Jing-Jong Shyue
Dynamic secondary ion mass spectrometry (D-SIMS) analysis of poly(ethylene terephthalate) (PET) and poly(methyl methacrylate) (PMMA) was conducted using a quadrupole mass analyzer with various combinations of continuous C(60)(+) and Ar(+) ion sputtering. Individually, the Ar(+) beam failed to generate fragments above m/z 200, and the C(60)(+) beam generated molecular fragments of m/z ~1000. By combining the two beams, the auxiliary Ar(+) beam, which is proposed to suppress carbon deposition due to C(60)(+) bombardment and/or remove graphitized polymer, the sputtering range of the C(60)(+) beam is extended. Another advantage of this technique is that the high sputtering rate and associated high molecular ion intensity of the C(60)(+) beam generate adequate high-mass fragments that mask the damage from the Ar(+) beam. As a result, fragments at m/z ~900 can be clearly observed. As a depth-profiling tool, the single C(60)(+) beam cannot reach a steady state for either PET or PMMA at high ion fluence, and the intensity of the molecular fragments produced by the beam decreases with increasing C(60)(+) fluence. As a result, the single C(60)(+) beam is suitable for profiling surface layers with limited thickness. With C(60)(+)-Ar(+) co-sputtering, although the initial drop in intensity is more significant than with single C(60)(+) ionization because of the damage introduced by the auxiliary Ar(+), the intensity levels indicate that a more steady-state process can be achieved. In addition, the secondary ion intensity at high fluence is higher with co-sputtering. As a result, the sputtered depth is enhanced with co-sputtering and the technique is suitable for profiling thick layers. Furthermore, co-sputtering yields a smoother surface than single C(60)(+) sputtering.
Analytica Chimica Acta | 2014
Hua-Yang Liao; Meng-Hung Tsai; Wei-Lun Kao; Ding-Yuan Kuo; Jing-Jong Shyue
Polymethylmethacrylate (PMMA) is widely used in various fields, including the semiconductor, biomaterial and microelectronic fields. Obtaining the correct depth profiles of PMMA is essential, especially when it is used as a thin-film. There have been many studies that have used earlier generation of cluster ion (SF5(+)) as the sputtering source to profile PMMA films, but few reports have discussed the use of the more recently developed C60(+) in the PMMA sputtering process. In this study, X-ray photoelectron spectroscopy (XPS) and dynamic secondary ion mass spectroscopy (D-SIMS) were used concurrently to monitor the depth profiles of PMMA under C60(+) bombardment. Additionally, the cosputtering technique (C60(+) sputtering with auxiliary, low-kinetic-energy Ar(+)) was introduced to improve the analytical results. The proper cosputtering conditions could eliminate the signal enhancement near the interface that occurred with C60(+) sputtering and enhance the sputtering yield of the characteristic signals. Atomic force microscopy (AFM) was also used to measure the ion-induced topography. Furthermore, the effect of the specimen temperature on the PMMA depth profile was also examined. At higher temperatures (+120°C), the depolymerization reaction that corresponded to main-chain scission dominated the sputtering process. At lower temperatures (-120°C), the cross-linking mechanism was retarded significantly due to the immobilization of free radicals. Both the higher and lower sample temperatures were found to further improve the resulting depth profiles.
ACS Applied Materials & Interfaces | 2013
Jui-Fen Chien; Hua-Yang Liao; Sheng-Fu Yu; Ray-Ming Lin; Makoto Shiojiri; Jing-Jong Shyue; Miin-Jang Chen
Remote plasma in situ atomic layer doping technique was applied to prepare an n-type nitrogen-doped ZnO (n-ZnO:N) layer upon p-type magnesium-doped GaN (p-GaN:Mg) to fabricate the n-ZnO:N/p-GaN:Mg heterojuntion light-emitting diodes. The room-temperature electroluminescence exhibits a dominant ultraviolet peak at λ ≈ 370 nm from ZnO band-edge emission and suppressed luminescence from GaN, as a result of the decrease in electron concentration in ZnO and reduced electron injection from n-ZnO:N to p-GaN:Mg because of the nitrogen incorporation. The result indicates that the in situ atomic layer doping technique is an effective approach to tailoring the electrical properties of materials in device applications.
Analytical Chemistry | 2013
Hua-Yang Liao; Kang-Yi Lin; Wei-Lun Kao; Hsun-Yun Chang; Chih-Chieh Huang; Jing-Jong Shyue
In the past decade, the C60-based ion gun has been widely utilized in the secondary ion mass spectrometry (SIMS) analysis of organic and biological materials because molecular secondary-ions of high masses could be generated by cluster-ion bombardment. This technique furthers the development of SIMS in bioanalysis by eliminating the need for either heteroatom or isotope labeling. However, the intensity of high-mass parent ions was usually low and limited the sensitivity of the analysis, thus requiring an enhancement in the intensity of these molecular ions to widen the application of SIMS. In this work, the aim was to preserve samples in their original state while using a low kinetic energy O2(+) beam cosputtered with high-energy C60(+) to enhance the ion intensity through the depth-profile. Although O2(+) is generally used to enhance ion intensities in positive SIMS, it is known to alter the chemical structure and primarily provide elemental information; hence, it is not suitable for profiling organic and biological specimens. Nevertheless, owing to its high sputtering yield, cluster C60(+) ion removes and masks the structural damage, hence O2(+) may be used to enhance the ion intensity. The characteristic molecular ions of polyethylene terephthalate (PET), trehalose, and a peptide (papain inhibitor) are enhanced by 35×, 12×, and 3.5× with the use of the auxiliary O2(+) beam, respectively. This significant enhancement in ionization yield is attributed to the oxidation of molecules and formation of a hydroxyl group that serves as a proton donator. In addition to enhancing molecular SIMS signals, C60(+)-O2(+) cosputtering could also alleviate several problems, including sputtering rate decay, carbon deposition, and surface roughening, that are associated with C60(+) bombardment and produced better depth profiles.
Analytical Chemistry | 2012
Hua-Yang Liao; Meng-Hung Tsai; Hsun-Yun Chang; Yun-Wen You; Chih-Chieh Huang; Jing-Jong Shyue
In the past decade, buckminsterfullerene (C(60))-based ion beams have been utilized in surface analysis instruments to expand their application to profiling organic materials. Although it had excellent performance for many organic and biological materials, its drawbacks, including carbon deposition, carbon penetration, continuous decay of the sputtering rate, and a rough sputtered surface, hindered its application. Cosputtering with C(60)(+) and auxiliary Ar(+) simultaneously and sample rotation during sputtering were proposed as methods to reduce the above-mentioned phenomena. However, the improvement from these methods has not been compared or studied under identical conditions; thus, the pros and cons of these methods are not yet known experimentally. In this work, a series of specimens including bulk materials and thin films were used to explore the differences between cosputtering and sample rotation on the analytical results. The results show that both of these methods can alleviate the problems associated with C(60)(+) sputtering, but each method showed better improvement in different situations. The cosputtering technique better suppressed carbon deposition, and could be used to generally improve results, especially with continuous spectra acquisition during sputtering (e.g., dynamic secondary ion mass spectrometry (SIMS) depth profiling). In contrast, for the scheme of sputter-then-acquire (e.g., alternative X-ray photoelectron spectrometry or dual-beam static SIMS depth profiling), a better result was achieved by sample rotation because it resulted in a flatter sputtered surface. Therefore, depending on the analytical scheme, a different method should be used to optimize the experimental conditions.
Analytical Chemistry | 2012
Hua-Yang Liao; Meng-Hung Tsai; Yun-Wen You; Hsun-Yun Chang; Chih-Chieh Huang; Jing-Jong Shyue
To explore C(60)(+) sputtering beyond low-damage depth profiling of organic materials, X-ray photoelectron spectrometry (XPS) and secondary ion mass spectrometry (SIMS) were used to examine metallic surfaces during and after C(60)(+) sputtering. During C(60)(+) sputtering, XPS spectra indicated that the degrees of carbon deposition were different for different metallic surfaces. Moreover, for some metals (e.g., Al, W, Ta, Ti, and Mo), the intensity of the O 1s photoelectron increased significantly during C(60)(+) sputtering, even though the instrument was under ultrahigh vacuum (<5 × 10(-7) Pa). This result indicated that the rate of oxygen uptake was greater than the rate of C(60)(+) sputtering. This behavior was not observed with the commonly used Ar(+) sputtering. To measure the oxygen uptake kinetics, pure oxygen was leaked into the chamber to maintain a 5 × 10(-6) Pa oxygen environment. The C(60)(+)-sputtered surface had a clearly increased rate of oxygen uptake than the Ar(+)-sputtered surface, even for moderately reactive metals such as Fe and Ni. For relatively nonreactive metals such as Cu and Au, a small amount of carbon was implanted and no oxygen uptake was observed. High-resolution XPS spectra revealed the formation of metal carbides on these reactive metals, and the carbon deposition and enhanced uptake of oxygen correlated to the carbide formation. Because oxygen enhances the secondary ion yield through surface passivation, the enhanced oxygen uptake due to C(60)(+) sputtering could be beneficial for SIMS analysis. To examine this hypothesis, C(60)(+) and Ar(+) were used as primary ions, and it was found that the intensity enhancement (because of the oxygen flooding at 5 × 10(-6) Pa) was much higher with C(60)(+) than with Ar(+). Therefore, oxygen flooding during C(60)(+) sputtering has a great potential for enhancing the detection limit due to the enhanced oxygen uptake.
Nanotechnology | 2009
Hua-Yang Liao; Kang-Jung Lo; Che-Chen Chang
The present study has examined the thermal behavior of copper on silicon oxide to clarify the diffusion of copper on dielectrics in an oxygen environment. Films of copper-deposited silicon oxide were prepared on silicon wafers and then annealed in oxygen. Self-organization of copper occurred to form line structures of multiple strips in a specific oxygen pressure range. The line orientation of the produced structures was related to the line defects formed from termination of stacking faults and dislocations at the wafer surface. The line density was determined by the oxygen pressure used. The results underline a possibility of synthesizing copper meso/nanowires on dielectrics via self-organization.