Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huabin Cao is active.

Publication


Featured researches published by Huabin Cao.


Ecotoxicology and Environmental Safety | 2016

Alterations in trace element levels and mRNA expression of Hsps and inflammatory cytokines in livers of duck exposed to molybdenum or/and cadmium ☆

Huabin Cao; Feiyan Gao; Bing Xia; Mengmeng Zhang; Yilin Liao; Zhi Yang; Guoliang Hu; Caiying Zhang

To evaluate the effects of dietary Molybdenum (Mo) or/and Cadmium (Cd) on trace elements and the mRNA expression levels of heat shock proteins (Hsps) and inflammatory cytokines in duck livers. 240 healthy 11-day-old ducks were randomly divided into six groups with 40 ducks in each group, which were treated with Mo or/and Cd at different doses on the basal diet for 120 days. On days 30, 60, 90 and 120, 10 birds in each group were randomly selected and euthanized and then the livers were collected to determine the contents of Mo, Cd, copper (Cu), iron (Fe), zine (Zn), Selenium (Se) and the mRNA expression levels of Hsps, inflammatory cytokines. In addition, liver tissues at 120 days were subjected to histopathological analysis with the optical microscope. The results showed that the mRNA expression of Hsp60, Hsp70, Hsp90, tumor necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-κB), and cyclooxygenase-2 (COX-2) were significantly (P<0.01) upregulated in combination groups; Contents of Cu, Fe, Zn, and Se decreased in combined groups (P<0.05) in the later period of the test while contents of Mo and Cd significantly increased (P<0.01); Furthermore severe hepatocyte diffuse fatty, hepatic cords swelling, hepatic sinusoid disappeared, and inflammatory cells infiltrated around the hepatic central vein were observed in Mo combined with Cd groups. The results indicated that dietary Mo or/and Cd might lead to stress, inflammatory response, tissue damage and disturb homeostasis of trace elements in duck livers. Moreover the two elements showed a possible synergistic relationship. And the high mRNA expression of HSPs and inflammatory cytokines may play a role in the resistance of liver toxicity induced by Mo and Cd.


Infection, Genetics and Evolution | 2015

Identification of the source of A (H10N8) virus causing human infection

Yifei Xu; Huabin Cao; Hongyan Liu; Hailiang Sun; Brigitte E. Martin; Yulong Zhao; Qi Wang; Guangfu Deng; Jianli Xue; Yibo Zong; Jing Zhu; Feng Wen; Li-Ping Long; Sook-San Wong; Nan Zhao; Xiaoshan Fu; Ming Liao; Guoliang Hu; Richard J. Webby; George F. Gao; Xiu-Feng Wan

A novel H10N8 influenza A virus has been detected in three humans in China since December 2013. Although this virus was hypothesized to be a novel reassortant among influenza viruses from wild birds and domestic poultry, its evolutionary path leading to human infection is unknown. Sporadic surveillance at the live poultry market (LPM) suspected to be the source of infection for the first H10N8 patient has shown a gradual increase in influenza virus prevalence culminating with a predominance of H10N8 viruses. Influenza viruses detected in the LPM up to 8 months prior to human infection contributed genetic components to the zoonotic virus. These H10N8 viruses have continued to evolve within this LPM subsequent to the human infection, and continuous assessments of these H10N8 viruses will be necessary. Serological surveillance showed that the virus appears to have been present throughout the LPM system in Nanchang, China. Reduction of the influenza virus burden in LPMs is essential in preventing future emergence of novel influenza viruses with zoonotic and pandemic potential.


Oncotarget | 2017

Dysregulated expression of microRNAs and mRNAs in pulmonary artery remodeling in ascites syndrome in broiler chickens

Ping Liu; Fei Yang; Yu Zhuang; Qingyang Xiao; Huabin Cao; Caiying Zhang; Tiancheng Wang; Huayuan Lin; Xiaoquan Guo; Guoliang Hu

Ascites syndrome (AS), also known as pulmonary artery hypertension, remains a challenging disease that severely affects both humans and broiler chickens. Pulmonary artery remodeling presents a key step in the development of AS. In this study, we obtained pulmonary artery tissues from broilers with and without AS to perform miRNA sequencing analysis, miRNA-mRNA association analysis and pathological examinations. 29 significantly differentially expressed miRNAs were found both in known and novel miRNAs with 18 up-regulated and 11 down-regulated miRNAs. Their predicted potential targets were involved in a wide range of functional clusters as indicated via GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses. The upregulation of miR-155, miR-23b-3p, miR-146b-5p and miR-146b-3p were found closely associated with the pathogenesis of pulmonary artery remodeling in AS progression. The association analysis for the miRNAs-mRNAs showed that these 29 significantly differentially expressed miRNAs regulate 162 differentially expressed target genes. Among them, 20 miRNAs correlated with 18 predicted target genes that appear to be involved in pulmonary artery remodeling, mainly in three broad physiological processes: the hypoxia sensing response (HIF1a, NHE1, STAT5 and STAT3), endothelial permeability dysfunction (CD44, TRAF2, CDK2AP1, LZTFL1, JAZF1, PEBP1, LRP1B, RPS14 and THBS2) and inflammation (MEOX2, STAT5, STAT3, IRF8, MAP3K8, IL-1BETA and TNFRSF1B). Pathological pulmonary artery remodeling in the AS broilers was consistently observed in the present study. Taken together, the current analysis further illuminates the molecular mechanism of pulmonary artery remodeling underlying AS progression.


Ecotoxicology and Environmental Safety | 2016

The co-induced effects of molybdenum and cadmium on the mRNA expression of inflammatory cytokines and trace element contents in duck kidneys

Huabin Cao; Feiyan Gao; Bing Xia; Qingyang Xiao; Xiaoquan Guo; Guoliang Hu; Caiying Zhang

The aims of this study were determining the co-induced effects of dietary Cadmium (Cd) and high intake of Molybdenum (Mo) on renal toxicity in ducks. 240 healthy 11-day-old ducks were randomly divided into 6 groups, which were treated with Mo or/and Cd at different doses added to the basal diet for 120 days. Ducks of control group were fed with basal diet, LMo and HMo groups were fed with 15mg/kg Mo and 100mg/kg Mo respectively; ducks of Cd group were provided with 4mg/kg Cd which was added into basal diet. Two combination groups were treated with 15mg/kg Mo+4mg/kg Cd and 100mg/kg Mo+4mg/kg Cd respectively. On days 30, 60, 90 and 120, the mRNA expression levels of inflammatory cytokines and contents of trace elements were detected. In addition, transmission electron microscopic examination was used for ultrastructural studies. The results indicated that the mRNA expression levels of tumor necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-κB), and cyclooxygenase-2 (COX-2) showed an upward tendency in treatment groups in comparison with control group, and in the later period of the experiment it showed a significant rise in joint groups compared with the Mo and Cd group (P<0.01); the contents of copper (Cu) and iron (Fe) decreased in joint groups in the later period (P<0.05) while the contents of Mo and Cd significantly increased (P<0.01); zinc (Zn) and selenium (Se) concentration had a slight downtrend in treated groups, but showed no significant difference (P>0.05). The ultrastructural analysis showed that kidney tissues were severely injured in joint groups on day 120. These results suggested that the combination of Mo and Cd could aggravate damages to the kidney. In addition, dietary of Mo or/and Cd caused the decrease of Cu, Fe, Zn, and Se contents, inflammatory response and pathological lesions whose mechanism is somehow linked with Mo and Cd deposition in kidney.


Chemosphere | 2018

Alterations of Mitochondrial Antioxidant Indexes and Apoptosis in Duck Livers Caused by Molybdenum or/and Cadmium

Xueyan Dai; Chenghong Xing; Huabin Cao; Junrong Luo; Tiancheng Wang; Ping Liu; Xiaoquan Guo; Guoliang Hu; Caiying Zhang

Cadmium (Cd) and high Molybdenum (Mo) can lead to adverse reactions on animals, but the co-induced toxicity of Mo and Cd to liver in ducks was not well understood. To investigate the co-induced toxic effects of Mo combined with Cd on mitochondrial oxidative stress and apoptosis in duck livers. 240 healthy 11-day-old ducks were randomly divided into 6 groups (control, LMo group, HMo group, Cd group, LMoCd group and HMoCd group). After being treated for 30, 60, 90 and 120 days, liver mitochondrial antioxidant indexes, ceruloplasmin (CP), metallothionein (MT), Bak-1 and Caspase-3 genes mRNA expression levels, and ultrastructural changes were evaluated. The results showed that total antioxidative capacity (T-AOC), catalase (CAT), superoxide dismutase (SOD) and xanthine oxidase (XOD) activities in experimental groups were decreased, whereas malondialdehyde (MDA) content and nitric oxide synthase (NOS) activity were increased compared with control group, and these changes of co-treated groups were more obvious in the later period of the experiment. The mRNA expression levels of CP, Bak-1 and Caspase-3 were up-regulated in experimental groups compared with control group and showed significant difference between co-treated groups and single treated groups. The mRNA expression level of MT in Cd group was higher than that in co-treated groups. Additionally, ultrastructural changes showed karyopyknosis, mitochondrial swelling, vacuolation and disruption of mitochondrial cristae in co-treated groups. Taken together, it was suggested that dietary Mo and Cd might lead to mitochondrial oxidative stress and apoptosis in duck livers, and it showed a possible synergistic relationship between the two elements.


Journal of Veterinary Science | 2015

Elevated level of renal xanthine oxidase mRNA transcription after nephropathogenic infectious bronchitis virus infection in growing layers.

Huayuan Lin; Qiqi Huang; Xiaoquan Guo; Ping Liu; Weilian Liu; Yuelong Zou; Shuliang Zhu; Guangfu Deng; Jun Kuang; Caiying Zhang; Huabin Cao; Guoliang Hu

To assess relationships between xanthine oxidase (XOD) and nephropathogenic infectious bronchitis virus (NIBV) infection, 240 growing layers (35 days old) were randomly divided into two groups (infected and control) of 120 chickens each. Each chicken in the control and infected group was intranasally inoculated with 0.2 mL sterile physiological saline and virus, respectively, after which serum antioxidant parameters and renal XOD mRNA expression in growing layers were evaluated at 8, 15 and 22 days post-inoculation (dpi). The results showed that serum glutathione peroxidase and superoxide dismutase activities in the infected group were significantly lower than in the control group at 8 and 15 dpi (p < 0.01), while serum malondialdehyde concentrations were significantly higher (p < 0.01). The serum uric acid was significantly higher than that of the control group at 15 dpi (p < 0.01). In addition, the kidney mRNA transcript level and serum activity of XOD in the infected group was significantly higher than that of the control group at 8, 15 and 22 dpi (p < 0.05). The results indicated that NIBV infection could cause the increases of renal XOD gene transcription and serum XOD activity, leading to hyperuricemia and reduction of antioxidants in the body.


Journal of Veterinary Science | 2017

Alterations in antioxidant function and cell apoptosis in duck spleen exposed to molybdenum and/or cadmium

Mengmeng Zhang; Junrong Luo; Caiying Zhang; Huabin Cao; Bing Xia; Guoliang Hu

To investigate the effects of molybdenum (Mo) and/or cadmium (Cd) on antioxidant function and the apoptosis-related genes in duck spleens. Sixty healthy 11-day-old ducks were randomly divided into six groups of 10 ducks (control, low Mo group, high Mo, Cd, low Mo + Cd, and high Mo + Cd groups). All were fed a basal diet containing low or high dietary doses of Mo and/or Cd. Relative spleen weight, antioxidant indices, apoptosis-related gene mRNA expression levels, and ultrastructural changes were evaluated after 120 days. The results showed that the relative spleen weight decreased significantly in the high Mo + Cd treatment group which compared with control group. Malondialdehyde levels increased and xanthine oxidase and catalase activities decreased in the Mo and/or Cd groups compared with levels in the control group. Bak-1 and Caspase-3 expressions were upregulated in the high Mo + Cd group, while Bcl-2 was downregulated. In addition, mitochondrial crest fracture, swelling, vacuolation, deformed nuclei, and karyopyknosis in both Mo + Cd treated groups were more severe than in the other groups. The results suggest that Mo and/or Cd can induce oxidative stress and apoptosis of spleen via effects on the mitochondrial intrinsic pathway. Moreover, the results indicate the two elements have a possible synergistic relationship.


Ecotoxicology and Environmental Safety | 2017

Effects of molybdenum and cadmium on the oxidative damage and kidney apoptosis in Duck

Lele Shi; Huabin Cao; Junrong Luo; Ping Liu; Tiancheng Wang; Guoliang Hu; Caiying Zhang

Molybdenum (Mo) is an essential element for human beings and animals; however, high dietary intake of Mo can lead to adverse reactions. Cadmium (Cd) is one of the major transitional metals which has toxic effects in animals. To investigate the co-induced toxic effects of Mo and Cd on oxidative damage and kidney apoptosis in duck, 120 ducks were randomly divided into control group and 5 treatment groups which were treated with a commercial diet containing different dosages of Mo and Cd. Kidney samples were collected on the 60th and 120th days to determine the mRNA expression levels of ceruloplasmin (CP), metallothionein (MT), Bak-1, and Caspase-3 by quantitative RT-PCR. Additionally, we also determined the antioxidant activity indexes and contents of Mo, Cd, copper (Cu), iron (Fe), zinc (Zn), and selenium (Se) in serum. Meanwhile, ultrastructural changes of the kidney were observed. The results showed that glutathione reductase (GR) activity and CP level in serum were decreased in combination groups. In addition, the antioxidant indexes were decreased in co-treated groups compared with single treated groups. The mRNA expression levels of Bak-1 and Caspase-3 increased in co-treated groups. The mRNA expression level of CP in high-dose combination group was downregulated, while the mRNA expression of MT was upregulated except for low-dose Mo group. Additionally, in the later period the content of Cu in serum decreased in joint groups while the contents of Mo and Cd increased. In addition, ultrastructural changes showed mitochondrial crest fracture, swelling, deformed nuclei, and karyopyknosis in co-treated groups. Taken together, it was suggested that dietary Mo and Cd might lead to oxidative stress, kidney apoptosis and disturb homeostasis of trace elements in duck, and it showed a possible synergistic relationship between the two elements.


PLOS ONE | 2016

Transcriptome Analysis and Gene Identification in the Pulmonary Artery of Broilers with Ascites Syndrome.

Fei Yang; Huabin Cao; Qingyang Xiao; Xiaoquan Guo; Yu Zhuang; Caiying Zhang; Tiancheng Wang; Huayuan Lin; Yalu Song; Guoliang Hu; Ping Liu

Background Pulmonary arterial hypertension, also known as Ascites syndrome (AS), remains a clinically challenging disease with a large impact on both humans and broiler chickens. Pulmonary arterial remodeling presents a key step in the development of AS. The precise molecular mechanism of pulmonary artery remodeling regulating AS progression remains unclear. Methodology/Principal Findings We obtained pulmonary arteries from two positive AS and two normal broilers for RNA sequencing (RNA-seq) analysis and pathological observation. RNA-seq analysis revealed a total of 895 significantly differentially expressed genes (DEGs) with 437 up-regulated and 458 down-regulated genes, which were significantly enriched to 12 GO (Gene Ontology) terms and 4 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways (Padj<0.05) regulating pulmonary artery remodeling and consequently occurrence of AS. These GO terms and pathways include ribosome, Jak-STAT and NOD-like receptor signaling pathways which regulate pulmonary artery remodeling through vascular smooth cell proliferation, inflammation and vascular smooth cell proliferation together. Some notable DEGs within these pathways included downregulation of genes like RPL 5, 7, 8, 9, 14; upregulation of genes such as IL-6, K60, STAT3, STAT5 Pim1 and SOCS3; IKKα, IkB, P38, five cytokines IL-6, IL8, IL-1β, IL-18, and MIP-1β. Six important regulators of pulmonary artery vascular remodeling and construction like CYP1B1, ALDH7A1, MYLK, CAMK4, BMP7 and INOS were upregulated in the pulmonary artery of AS broilers. The pathology results showed that the pulmonary artery had remodeled and become thicker in the disease group. Conclusions/Significance Our present data suggested some specific components of the complex molecular circuitry regulating pulmonary arterial remodeling underlying AS progression in broilers. We revealed some valuable candidate genes and pathways that involved in pulmonary artery remodeling further contributing to the AS progression.


International Journal of Biological Macromolecules | 2016

Prokaryotic expression of the chicken xanthine oxidase (XOD) subunit and its localization in liver and kidney.

Huayuan Lin; Yanjun Chen; Qiqi Huang; Xiaoquan Guo; Ping Liu; Weilian Liu; Caiying Zhang; Huabin Cao; Guoliang Hu

Xanthine oxidase (XOD) is the members of the molybdenum hydroxylase flavoprotein family and it plays a vital role in the bodys purine catabolism. In this study, we cloned the XOD 37kDa subunit protein by using RT-PCR and pMD-18-T clone vector based on the total RNA extracted from chicken liver. The cloning XOD subunit protein gene was ligated into the pET-32a to construct the recombinant plasmid pET-XOD. After the pET-XOD expression vector was transformed into host cells Rosetta (DE3), the recombinant XOD subunit proteins (54.8kDa) were successfully induced by isopropy1 β-d-thiogalactoside (IPTG). Rabbit antiserums were produced by using the purification of the recombinant XOD subunit protein as antigen. The titer of the antiserum was more than 1:102,400 determined by using ELISA. The result of Western blot demonstrated that the antiserum could specifically recognize the chicken liver XOD. Immunohistochemistry and immunofluorescence showed that the XOD mainly presented in the cytoplasm of chicken hepatocytes and proximal tubular epithelial cells. Our results indicated that the XOD subunit protein polyclonal antibody prepared by this method could be used for the further researches of the biological function of the XOD in the chicken.

Collaboration


Dive into the Huabin Cao's collaboration.

Top Co-Authors

Avatar

Guoliang Hu

Jiangxi Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Caiying Zhang

Jiangxi Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ping Liu

Jiangxi Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiaoquan Guo

Jiangxi Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Junrong Luo

Jiangxi Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Bing Xia

Jiangxi Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qingyang Xiao

Jiangxi Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Tiancheng Wang

Jiangxi Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yu Zhuang

Jiangxi Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Fei Yang

Jiangxi Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge