Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huaiyang Zhou is active.

Publication


Featured researches published by Huaiyang Zhou.


Journal of Microbiology | 2009

Microbial diversity of a sulfide black smoker in main endeavour hydrothermal vent field, Juan de Fuca Ridge

Huaiyang Zhou; Jiang-Tao Li; Xiaotong Peng; Jun Meng; Fengping Wang; Yuncan Ai

Submarine hydrothermal vents are among the least-understood habitats on Earth but have been the intense focus of research in the past 30 years. An active hydrothermal sulfide chimney collected from the Dudley site in the Main Endeavour vent Field (MEF) of Juan de Fuca Ridge was investigated using mineralogical and molecular approaches. Mineral analysis indicated that the chimney was composed mainly of Fe-, Zn-and Cu-rich sulfides. According to phylogenetic analysis, within the Crenarchaeota, clones of the order Desulfurococcales predominated, comprising nearly 50% of archaeal clones. Euryarchaeota were composed mainly of clones belonging to Thermococcales and deep-sea hydrothermal vent Euryarchaeota (DHVE), each of which accounted for about 20% of all clones. Thermophilic or hyperthermophilic physiologies were common to the predominant archaeal groups. More than half of bacterial clones belonged to ɛ-Proteobacteria, which confirmed their prevalence in hydrothermal vent environments. Clones of Proteobacteria (γ-, δ-, β-), Cytophaga-Flavobacterium-Bacteroides (CFB) and Deinococcus-Thermus occurred as well. It was remarkable that methanogens and methanotrophs were not detected in our 16S rRNA gene library. Our results indicated that sulfur-related metabolism, which included sulfur-reducing activity carried out by thermophilic archaea and sulfur-oxidizing by mesophilic bacteria, was common and crucial to the vent ecosystem in Dudley hydrothermal site.


FEMS Microbiology Ecology | 2012

Microbial diversity and biomineralization in low-temperature hydrothermal iron–silica-rich precipitates of the Lau Basin hydrothermal field

Jiangtao Li; Huaiyang Zhou; Xiaotong Peng; Zijun Wu; Shun Chen; Jiasong Fang

Iron-silica-rich low-temperature hydrothermal precipitates were collected from the CDE hydrothermal field located at the East Lau Spreading Center. Phylogenetic analysis showed that the precipitates were dominated by the members of α-proteobacteria and marine group I archaea. Ultrastructural analysis suggested the bacteriogenic origin of the iron-silica-rich deposits. Distinctive biosignatures detected included straight filaments, helical stalks and curved irregular filaments, which were similar in appearance to those structures excreted by the known iron-oxidizing genera Leptothrix spp., Gallionella spp. and Mariprofundus spp. 16S rRNA gene analysis confirmed the presence of neutrophilic iron-oxidizing bacteria with the detection of phylotypes clustering with Gallionella spp. and the proposed ζ-proteobacteria class. Mineralogy and bulk geochemical analyses showed that the precipitates were dominated by amorphous silica with low amounts of iron. Based on microbiological, geochemical and mineralogical analyses, we conclude that silicification was a common process and microbial cells and related ultrastructures likely acted as nucleation templates for silica precipitation in the CDE hydrothermal field.


Scientific Reports | 2015

The impact of temperature on microbial diversity and AOA activity in the Tengchong Geothermal Field, China.

Haizhou Li; Qunhui Yang; Jian Li; Hang Gao; Ping Li; Huaiyang Zhou

Using a culture-independent method that combines CARD-FISH, qPCR and 16S rDNA, we investigated the abundance, community structure and diversity of microbes along a steep thermal gradient (50–90 °C) in the Tengchong Geothermal Field. We found that Bacteria and Archaea abundance changed markedly with temperature changes and that the number of cells was lowest at high temperatures (90.8 °C). Under low-temperature conditions (52.3–74.6 °C), the microbial communities were dominated by Bacteria, which accounted for 60–80% of the total number of cells. At 74.6 °C, Archaea were dominant, and at 90.8 °C, they accounted for more than 90% of the total number of cells. Additionally, the microbial communities at high temperatures (74.6–90.8 °C) were substantially simpler than those at the low-temperature sites. Only a few genera (e.g., bacterial Caldisericum, Thermotoga and Thermoanaerobacter, archaeal Vulcanisaeta and Hyperthermus) often dominated in high-temperature environments. Additionally, a positive correlation between Ammonia-Oxidizing Archaea (AOA) activity and temperature was detected. AOA activity increased from 17 to 52 pmol of NO2− per cell d−1 with a temperature change from 50 to 70 °C.


American Mineralogist | 2013

Mineralogical characterization and formation of Fe-Si oxyhydroxide deposits from modern seafloor hydrothermal vents

Zhilei Sun; Huaiyang Zhou; G.P. Glasby; Zhixue Sun; Qunhui Yang; Xijie Yin; Jiwei Li

Abstract We have studied mineralogical characteristics of Fe-Si oxide precipitates from hydrothermal fields of the Valu Fa Ridge, Lau Basin, especially the role that the neutrophilic Fe-oxidizing bacteria played in their formation, using various analytical techniques (XRD, SEM, EPMA, TG/DTA, and FTIR). According to this examination, the Fe-Si oxide formation can be divided into two stages. At the initial stage, the Fe-oxidizing bacteria bound and oxidized Fe2+ into Fe3+ to fix CO2, triggering precipitation of Fe-oxyhydroxide (ferrihydrite) and construction of a loose network of Fe-rich filaments. Subsequently, the decreased porosity of the network resulting from the gradual growth of the filaments led to a decline in the mixing between seawater and the hydrothermal fluids. Then the conductive cooling of the network resulted in saturation of the dissolved Si with respect to amorphous silica. As a result, significant precipitation of opal-A occurred through inorganic polymerization. However, part of the silica was immobilized by bonding to Fe-OH functional groups and yielded unpolymerized silica, which is characterized by Fe-O-Si bond. Owing to the incorporation of Si into the ferrihydrite structure and its adsorption on the ferrihydrite surface, the modern hydrothermal Fe-Si oxides are thermally stable. DSC measurements indicate the full segregation of cristobalite from hematite at about 800 °C in an O2 atmosphere. These observations indicate that primary alternating Si- and Fe-rich layers may be absent in the Archean ocean and that alternating bands in BIFs represent a diagenetic process; our work thus provides a potential clue that can be used to unravel the precipitation and diagenetic mechanisms of Precambrian banded iron formations (BIF).


Scientific Reports | 2016

Jurassic zircons from the Southwest Indian Ridge

Hao Cheng; Huaiyang Zhou; Qunhui Yang; Lingmin Zhang; Fuwu Ji; Henry J. B. Dick

The existence of ancient rocks in present mid-ocean ridges have long been observed but received less attention. Here we report the discovery of zircons with both reasonably young ages of about 5 Ma and abnormally old ages of approximate 180 Ma from two evolved gabbroic rocks that were dredged from the Southwest Indian Ridge (SWIR) in the Gallieni fracture zone. U–Pb and Lu–Hf isotope analyses of zircons were made using ion probe and conventional laser abrasion directly in petrographic thin sections. Young zircons and their host oxide gabbro have positive Hf isotope compositions (εHf = +15.7–+12.4), suggesting a highly depleted mantle beneath the SWIR. The spread εHf values (from−2.3 to−4.5) of abnormally old zircons, together with the unradiogenic Nd-Hf isotope of the host quartz diorite, appears to suggest an ancient juvenile magmatism along the rifting margin of the southern Gondwana prior to the opening of the Indian Ocean. A convincing explanation for the origin of the unusually old zircons is yet to surface, however, an update of the theory of plate tectonics would be expected with continuing discovery of ancient rocks in the mid-oceanic ridges and abyssal ocean basins.


Biometals | 2009

Ultrastructural evidence for iron accumulation within the tube of Vestimentiferan Ridgeia piscesae

Xiaotong Peng; Huaiyang Zhou; Huiqiang Yao; Jiangtao Li; Zijun Wu

This study reports on the accumulation of iron within the tube wall of the deep sea vent macro invertebrate Vestimentiferan Ridgeia piscesae collected from Juan de Fuca ridge. Combining an array of approaches including environmental scanning electron microscope (ESEM), electron probe micro-analysis (EPMA), X-ray microanalysis (EDS) and transmission electron microscope (TEM), we provide evidences for the influence of prokaryotic organisms on the accumulation of metals on and within the tube wall. Two types of iron-rich minerals such as iron oxides and framboidal pyrites are identified within or on the tube wall. Our results reveal the presence of prokaryotic organism is apparently responsible for the early accumulation of iron-rich minerals in the tube wall. The implications of the biomineralisation of iron in tube wall at hydrothermal vents are discussed.


Journal of Microbiology | 2014

Microbial Communities in Semi-consolidated Carbonate Sediments of the Southwest Indian Ridge §

Jiwei Li; Xiaotong Peng; Huaiyang Zhou; Jiangtao Li; Zhilei Sun; Shun Chen

White semi-consolidated carbonate sediments attached to black ferromanganese oxide films were collected approximately 50 km west of a newly discovered hydrothermal field near the Southwest Indian Ridge (SWIR). The biodiversity of the prokaryotic communities within the field was examined using clone library-based culture-independent analysis of the exterior black oxides and the interior white carbonates. Subsequent 16S rRNA gene analysis suggested that Gamma-proteobacteria, Acidobacteria, and Thaumarchaeota members dominated the bacterial and archaeal clone libraries. To further characterize the metabolic processes within the microbial community, analyses of the amoA (coding the alpha subunit of the ammonia monooxygenase for Archaea) and aprA (coding the alpha subunit of the dissimilatory adenosine-5′-phosphosulfate reductase for the sulfate-reducing and sulfur-oxidizing prokaryotes) functional genes were conducted. The functional gene analysis results suggested that Thaumarchaeota and Alphaproteobacteria members were the potential players that participated in N and S cycles in this marine carbonate sedimentary environment. This paper is the first to describe the microbial communities and their potential metabolic pathways within the semi-consolidated carbonate sediments of the SWIR.


International Geology Review | 2013

Influence of igneous processes and serpentinization on geochemistry of the Logatchev Massif harzburgites (14°45′N, Mid-Atlantic Ridge), and comparison with global abyssal peridotites

Zhiqiang Chen; Huaiyang Zhou; Yang Liu; Qunhui Yang; Jiwei Li; Henry J. B. Dick

We acquired bulk-rock analyses of Mid-Atlantic Ridge (MAR) harzburgites in order to understand the influence of submarine igneous and metamorphic processes on the distribution of incompatible elements (especially rare Earth elements or REEs) in abyssal peridotites. The geochemical characteristics of these Logatchev Massif serpentinized and talc-altered harzburgites, and spatially associated metagabbros were then compared with a compilation of global abyssal peridotites. The Logatchev harzburgites show light rare earth element (LREE) enrichments (average La N /Yb N = 2.81), positive correlations between LREEs (e.g. La, Ce, Pr, and Nd) and high field strength elements (HFSEs; e.g. Nb and Zr), and positive correlations between HFSEs and Th. Most global abyssal peridotites show similar trends. We suggest that the systematic enrichment of incompatible elements probably reflects a post-partial fusion magmatic refertilization. The compositional scatter exhibited by some serpentinized peridotites in Nb-LREE diagrams is probably due to the elimination of diopside during partial melting and significant impregnation by a melt produced in the Opx–Ol–Sp melting field rather than to later hydrothermal alteration. The correlation between Pb and Nd observed for most global abyssal peridotites, including the Logatchev harzburgites, indicates magmatic generation. The scatter of Pb in some rocks suggests that lead is likely mobile during serpentinization or weathering. Low to moderate water/rock (W/R) ratios in the harzburgites calculated from Sr isotopic compositions (5.98–26.20 for a close system and 1.66–2.72 for an open system), and the low abundance of REEs in Logatchev hydrothermal fluids indicate that the REE contents of abyssal peridotites probably were little influenced by hydrothermal alteration. Compared to this later alteration, the presence of small proportions of gabbroic melt (from 1:30 to 1:3 in our sample) that crystallized in the residual harzburgites modified their REE patterns significantly by elevating the LREEs.


Science China-earth Sciences | 2012

Growth model of a hydrothermal low-temperature Si-rich chimney: Example from the CDE hydrothermal field, Lau Basin

Zhilei Sun; Huaiyang Zhou; Qunhui Yang; Xijie Yin; Hu Wang; Huiqiang Yao; CongFang Dong

The CDE hydrothermal field was first discovered during a Chinese cruise to the East Lau Basin Spreading Centre in 2007. Apart from significant amounts of loose Fe-Si-Mn (oxyhydr) oxide (referred to as oxide below) precipitates, a small Si-rich oxide chimney was also recovered on this cruise. In this study, we report on the mineralogical and geochemical analyses of this chimney and a model for its growth that has been developed. Based on the mineralogy and O isotope results, the chimney walls can be divided into four growth generations (layers) from the inner to the outer layers: amorphous opal and barite layer (precipitation temperature 68.5°C based on oxygen isotope determinations), a rod-like amorphous layer (precipitation temperature 39.6°C), a filamentous Fe-Si oxide layer, and an outer Fe-Mn oxide layer. Investigations based on SEM and EDS showed that neutrophilic Fe-oxidizing bacteria play an important role in the formation of this chimney, particularly in the outer two generations. In the first stage, the metabolic activity of the microbes results in the pervasive precipitation of the filamentous Fe-rich oxides inside a ring formed by some amorphous opal and barite; therefore, a loose porous layer forms. In the second stage, amorphous opal then precipitates inside this wall as a result of conductive cooling and gradually controls the mixing between the hydrothermal fluids and ambient seawaters. In the third stage, barite and some amorphous opal form from the higher temperature fluids at the summit of the chimney growth history. In the last stage, the chimney wall becomes thicker and denser and the exchange of hydrothermal fluids and seawater ceases. As a result, a Fe-Mn oxide layer precipitates onto the outer surface of the chimney wall as neutrophilic Fe-oxidizing bacteria reoccupy the surface of the chimney. This mineral sequence and the resultant growth generations are confirmed by the chemical characteristics of the chimney wall. Sr isotopes extracted from the Fe oxides of the four-generation wall generally show a decreasing trend of the 87Sr/86Sr ratios from the second layer to the inner layer (from 0.707008 to 0.705877) except for the outer layer (0.706502). The Sr isotope and chondrite normalized REE patterns of the corresponding bulk samples from the chimney wall also display a similar trend. Our study shows that the biogenic filament network plays a key role in the formation of the chimney in contrast to previous growth models of higher temperature chimneys, which often ignore the influence of biogenic factors.


Geomicrobiology Journal | 2016

Microbial Distribution in a Hydrothermal Plume of the Southwest Indian Ridge

Jiangtao Li; Huaiyang Zhou; Jiasong Fang; Zijun Wu; Xiaotong Peng

abstract Hydrothermal plumes are widely distributed throughout the global spreading ridges, yet few of them are microbiologically explored. The ultraslow-spreading ridges, recently recognized as a unique, new class of mid-ocean-ridge system, have provided surprises and new insights in hydrothermal system research. A suite of water column samples including both hydrothermal plume samples and ambient seawater were collected at different depths from the ultraslow-spreading Southwest Indian Ridge (SWIR) in 2010. We use molecular approaches such as clone libraries, denaturing gradient gel electrophoresis (DGGE) and quantitative PCR to determine microbial community compositions and their spatial variability within the hydrothermal plume and seawater. Phylogenetic analysis showed that plume samples were mainly dominated by members of α-Proteobacteria and γ-Proteobacteria and members of marine group I group within the Crenarchaeota. Within the hydrothermal plume, archaeal populations were spatially homogeneous, while bacterial compositions were heterogeneous and remarkably distinct at different depths. Moreover, several lineages, closely related to known Mn(II) oxidizers were found to be abundant and even predominant within the plume bacterial communities. DGGE band patterns showed that there was no significant difference in microbial compositions between the samples of hydrothermal plume and ambient seawater. Taken together, we inferred that microbial communities in the SWIR hydrothermal plumes were sourced from ambient seawater rather than from seafloor vent-derived niches. This is the first report on the characteristics of microbial community structures in hydrothermal plume and ambient seawater in the Southwest Indian Ridge.

Collaboration


Dive into the Huaiyang Zhou's collaboration.

Top Co-Authors

Avatar

Xiaotong Peng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huiqiang Yao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jiwei Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shun Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhiqiang Chen

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge