aiyu Hu
State University of New York Upstate Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by aiyu Hu.
Neuron | 1999
Huaiyu Hu
Newborn cerebral cortical neurons migrate along radial glia to the cortical plate. Experiments using a collagen gel assay revealed that the choroid plexus repelled cerebral cortical neurons and olfactory interneuron precursors, which were mimicked by Neuro-2A cells. Fractionation of Neuro-2A-conditioned medium identified a protein of 190 kDa, equivalent to full-length Slit proteins. Indeed, it cross-reacted with an antibody against Slit2, suggesting that it is either Slit2 or another Slit protein. Further, Slit2, expressed in COS cells, repelled cerebral cortical neurons and olfactory interneuron precursors. Thus, Slit2, which is expressed by the choroid plexus and the septum, acts as a chemorepulsive factor for neuronal migration. These results suggest chemorepulsion as a guidance mechanism for neuronal migration in the developing forebrain.
Nature Neuroscience | 2001
Huaiyu Hu
Slit proteins are a family of secreted guidance proteins that can repel neuronal migration and axon growth via interaction with their cellular roundabout receptors (Robos). Here it was shown that Slit2–Robo-1 interactions were enhanced by cell-surface heparan sulfate. Removal of heparan sulfate decreased the affinity of Slit for Robo by about threefold. In addition, removal of cell-surface heparan sulfate by heparinase III abolished the chemorepulsive response to Slit2 normally shown by both the migrating neurons and growing axons. These results indicate essential roles for cell-surface heparan sulfate in the repulsive activities of Slit2.
Mechanisms of Development | 2003
Jianmin Liu; Lei Zhang; Dongmei Wang; Huaming Shen; Min Jiang; Pinchao Mei; Patrick S. Hayden; John R. Sedor; Huaiyu Hu
Slit3 along with Slit1 and Slit2 comprise the Slit family of proteins. The latter two proteins are known to be involved in axon guidance and cell migration during animal development. However, little is know about the functions of Slit3. We created a Slit3-deficient mouse model from an OmniBank ES cell line with a Slit3 allele trapped by insertional mutagenesis to analyze the in vivo functions of this protein. In this model, congenital diaphragmatic hernia is the most obvious phenotype. Herniation was found to be caused by a defective central tendon (CT) of the diaphragm that remained fused with the liver. Electron microscopic analyses of the defective CT revealed disorganized collagen fibrils that failed to form tight collagen bundles. The hearts of Slit3-deficient mice have an enlarged right ventricle. In addition, 20% of homozygous mice also showed a range of kidney defects that include unilateral or bilateral agenesis of the kidney and ureter, or varying degrees of renal hypoplasia. Thus, we concluded that Slit3 is involved in the development of multiple organ systems that include the diaphragm and the kidney. Slit3-deficient mice represent a genetic animal model for physiological and pathological studies of congenital diaphragmatic hernia.
Mechanisms of Development | 2006
Jianmin Liu; Sherry L. Ball; Yuan Yang; Pinchao Mei; Lei Zhang; Haining Shi; Henry J. Kaminski; Vance Lemmon; Huaiyu Hu
Protein O-mannose beta1,2-N-acetyglucosaminyltransferase 1 (POMGnT1) is an enzyme involved in the synthesis of O-mannosyl glycans. Mutations of POMGnT1 in humans result in the muscle-eye-brain (MEB) disease. In this study, we have characterized a null mutation generated by gene trapping with a retroviral vector inserted into the second exon of the mouse POMGnT1 locus. Expression of POMGnT1 mRNA was abolished in mutant mice. Glycosylation of alpha-dystroglycan was also reduced. POMGnT1 mutant mice were viable with multiple developmental defects in muscle, eye, and brain, similar to the phenotypes observed in human MEB disease. The present study provides the first genetic animal model to further dissect the roles of POMGnT1 in MEB disease.
Journal of Neuroscience Research | 2000
Huaiyu Hu
Olfactory interneuron precursors in the rostral migration stream migrate in chains and through long distances to the olfactory bulb. The migration is inhibited when polysialic acid moiety of NCAM is removed. How polysialic acid regulates chain migration has remained unknown. Previous studies in other systems have indicated the polysialic acid as a negative regulator of cell–cell interactions. Thus, polysialic acid may prevent cells in chains from interacting too tightly. To test this hypothesis and examine how polysialic acid regulates chain migration, the effect of polysialic acid depletion was evaluated in vitro and in vivo. Surprisingly, removal of polysialic acid often resulted in the dispersion of chains into single cells in both subventricular zone cultures and in adult mice where chain migration was observed. These results indicate that polysialic acid plays an important role in the formation of chains by olfactory interneuron precursors. J. Neurosci. Res. 61:480–492, 2000.
Journal of Biological Chemistry | 2011
Stephanie H. Stalnaker; Kazuhiro Aoki; Jae-Min Lim; Mindy Porterfield; Mian Liu; Jakob S. Satz; Sean Buskirk; Yufang Xiong; Peng Zhang; Kevin P. Campbell; Huaiyu Hu; David Live; Michael Tiemeyer; Lance Wells
Dystroglycanopathies are a subset of congenital muscular dystrophies wherein α-dystroglycan (α-DG) is hypoglycosylated. α-DG is an extensively O-glycosylated extracellular matrix-binding protein and a key component of the dystrophin-glycoprotein complex. Previous studies have shown α-DG to be post-translationally modified by both O-GalNAc- and O-mannose-initiated glycan structures. Mutations in defined or putative glycosyltransferase genes involved in O-mannosylation are associated with a loss of ligand-binding activity of α-DG and are causal for various forms of congenital muscular dystrophy. In this study, we sought to perform glycomic analysis on brain O-linked glycan structures released from proteins of three different knock-out mouse models associated with O-mannosylation (POMGnT1, LARGE (Myd), and DAG1−/−). Using mass spectrometry approaches, we were able to identify nine O-mannose-initiated and 25 O-GalNAc-initiated glycan structures in wild-type littermate control mouse brains. Through our analysis, we were able to confirm that POMGnT1 is essential for the extension of all observed O-mannose glycan structures with β1,2-linked GlcNAc. Loss of LARGE expression in the Myd mouse had no observable effect on the O-mannose-initiated glycan structures characterized here. Interestingly, we also determined that similar amounts of O-mannose-initiated glycan structures are present on brain proteins from α-DG-lacking mice (DAG1) compared with wild-type mice, indicating that there must be additional proteins that are O-mannosylated in the mammalian brain. Our findings illustrate that classical β1,2-elongation and β1,6-GlcNAc branching of O-mannose glycan structures are dependent upon the POMGnT1 enzyme and that O-mannosylation is not limited solely to α-DG in the brain.
The Journal of Comparative Neurology | 2007
Huaiyu Hu; Yuan Yang; Amber Eade; Yufang Xiong; Yue Qi
Neuronal overmigration is the underlying cellular mechanism of cerebral cortical malformations in syndromes of congenital muscular dystrophies caused by defects in O‐mannosyl glycosylation. Overmigration involves multiple developmental abnormalities in the brain surface basement membrane, Cajal‐Retzius cells, and radial glia. We tested the hypothesis that breaches in basement membrane and the underlying glia limitans are the key initial events of the cellular pathomechanisms by carrying out a detailed developmental study with a mouse model of muscle‐eye‐brain disease, mice deficient in O‐mannose β1,2‐N‐acetylglucosaminyltransferase 1 (POMGnT1). The pial basement membrane was normal in the knockout mouse at E11.5. It was breached during rapid cerebral cortical expansion at E13.5. Radial glial endfeet, which comprise glia limitans, grew out of the neural boundary. Neurons moved out of the neural boundary through these breaches. The overgrown radial glia and emigrated neurons disrupted the overlying pia mater. The overmigrated neurons did not participate in cortical plate (CP) development; rather they formed a diffuse cell zone (DCZ) outside the original cortical boundary. Together, the DCZ and the CP formed the knockout cerebral cortex, with disappearance of the basement membrane and the glia limitans. These results suggest that disappearance of the basement membrane and the glia limitans at the cerebral cortical surface during development underlies cortical lamination defects in congenital muscular dystrophies and a cellular mechanism of cortical malformation distinct from that of the reeler mouse, double cortex syndrome, and periventricular heterotopia. J. Comp. Neurol. 501:168–183, 2007.
FEBS Journal | 2015
Willi Halfter; Philipp Oertle; Christophe A. Monnier; Leon Camenzind; Magaly Reyes-Lua; Huaiyu Hu; Joseph Candiello; Anatália Labilloy; Manimalha Balasubramani; Paul B. Henrich; Marija Plodinec
Basement membranes (BMs) are thin sheets of extracellular matrix that outline epithelia, muscle fibers, blood vessels and peripheral nerves. The current view of BM structure and functions is based mainly on transmission electron microscopy imaging, in vitro protein binding assays, and phenotype analysis of human patients, mutant mice and invertebrata. Recently, MS‐based protein analysis, biomechanical testing and cell adhesion assays with in vivo derived BMs have led to new and unexpected insights. Proteomic analysis combined with ultrastructural studies showed that many BMs undergo compositional and structural changes with advancing age. Atomic force microscopy measurements in combination with phenotype analysis have revealed an altered mechanical stiffness that correlates with specific BM pathologies in mutant mice and human patients. Atomic force microscopy‐based height measurements strongly suggest that BMs are more than two‐fold thicker than previously estimated, providing greater freedom for modelling the large protein polymers within BMs. In addition, data gathered using BMs extracted from mutant mice showed that laminin has a crucial role in BM stability. Finally, recent evidence demonstrate that BMs are bi‐functionally organized, leading to the proposition that BM‐sidedness contributes to the alternating epithelial and stromal tissue arrangements that are found in all metazoan species. We propose that BMs are ancient structures with tissue‐organizing functions and were essential in the evolution of metazoan species.
Human Gene Therapy | 2013
Miao Yu; Yonglin He; Kejian Wang; Peng Zhang; Shengle Zhang; Huaiyu Hu
Dystroglycanopathies are a group of congenital muscular dystrophies (CMD) often caused by mutations in genes encoding glycosyltransferases that lead to hypoglycosylation of α-dystroglycan (α-DG) and reduce its extracellular matrix-binding activity. Overexpressing LARGE (formerly known as like-glycosyltransferase) generates an extracellular matrix-binding carbohydrate epitope in cells with CMD-causing mutations in not only LARGE but also other glycosyltransferases, including POMT1, POMGnT1, and fukutin, creating the possibilities of a one-for-all gene therapy. To determine the feasibility of LARGE gene therapy, a serotype 9 adeno-associated viral vector for overexpressing LARGE (AAV9-LARGE) was injected intracardially into newborns of two mouse models of CMD: the natural LARGE mutant Large(myd) mice and protein O-mannose N-acetylglucosaminyltransferase 1 (POMGnT1) knockout mice. AAV9-LARGE virus treatment yielded partial restoration of α-DG glycosylation and ligand-binding activity. The muscular dystrophy phenotype in skeletal muscles was ameliorated as revealed by significantly reduced fibrosis, necrosis, and numbers of centrally located nuclei with improved motor function. These results indicate that LARGE overexpression in vivo by AAV9-mediated gene therapy is effective at restoring functional glycosylation of α-DG and rescuing the muscular dystrophy phenotype in deficiency of not only LARGE but also POMGnT1, providing evidence that in vivo LARGE gene therapy may be broadly useful in dystroglycanopathies.
The Journal of Comparative Neurology | 2007
Yuan Yang; Peng Zhang; Yufang Xiong; Xiaofeng Li; Yue Qi; Huaiyu Hu
Congenital muscular dystrophies with brain malformations, such as muscle‐eye‐brain disease, exhibit neural ectopias caused by overmigration of neurons. Such overmigration is evident in protein O‐mannose β‐1,2‐N‐acetylglucosaminyltransferase (POMGnT1) knockout mouse, a model of muscle‐eye‐brain disease, caused by breaches in the pial basement membrane. We hypothesize that breaches in pial basement membrane disrupt the neural‐meningeal boundary, resulting in ectopia of meningeal fibroblasts in the cerebral cortex and reactive gliosis. To test this hypothesis, the cerebral cortices of developing and adult POMGnT1 knockout mice were analyzed by immunostaining with cell‐specific markers and by electron microscopy. The upper half of the cerebral cortex in the knockout mouse contained increased numbers of fibroblasts closely associated with capillaries. During development of the cerebral cortex in the knockout mice, breaches in pial basement membrane allowed emigration of overmigrated neurons into the developing pia‐arachnoid, scattering its mesenchymal cells throughout the diffuse cell zone and resulting in ectopia of mesenchyme‐derived fibroblasts in the upper half of the cortex. Glial fibrillary acidic protein (GFAP) immunostaining revealed that the upper half of the cerebral cortex in the knockout also contained increased numbers of cells with morphologies typical of reactive astrocytes compared with the wild type. Moreover, most of the GFAP‐positive reactive astrocytes were in close contact with ectopic fibroblasts, suggesting that they were induced by the fibroblasts. Collectively, the data support the hypothesis that the cerebral cortex of POMGnT1 knockout mice is characterized by migration defects leading to disruption of the pia‐arachnoid, ectopia of fibroblasts in the cortex, and reactive gliosis. J. Comp. Neurol. 505:459–477, 2007.