Huaizhi Wang
Third Military Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Huaizhi Wang.
PLOS ONE | 2014
Yichen Tang; Xuejun Xu; Shixiang Guo; Chaobin Zhang; Yan Tang; Yi Tian; Bing Ni; Binfeng Lu; Huaizhi Wang
CD4+CD25+Foxp3+ regulatory T cells (Tregs) can inhibit cytotoxic responses. Though several studies have analyzed Treg frequency in the peripheral blood mononuclear cells (PBMCs) of pancreatic ductal adenocarcinoma (PDA) patients using flow cytometry (FCM), few studies have examined how intratumoral Tregs might contribute to immunosuppression in the tumor microenvironment. Thus, the potential role of intratumoral Tregs in PDA patients remains to be elucidated. In this study, we found that the percentages of Tregs, CD4+ T cells and CD8+ T cells were all increased significantly in tumor tissue compared to control pancreatic tissue, as assessed via FCM, whereas the percentages of these cell types in PBMCs did not differ between PDA patients and healthy volunteers. The percentages of CD8+ T cells in tumors were significantly lower than in PDA patient PBMCs. In addition, the relative numbers of CD4+CD25+Foxp3+ Tregs and CD8+ T cells were negatively correlated in the tissue of PDA patients, and the abundance of Tregs was significantly correlated with tumor differentiation. Additionally, Foxp3+ T cells were observed more frequently in juxtatumoral stroma (immediately adjacent to the tumor epithelial cells). Patients showing an increased prevalence of Foxp3+ T cells had a poorer prognosis, which was an independent factor for patient survival. These results suggest that Tregs may promote PDA progression by inhibiting the antitumor immunity of CD8+ T cells at local intratumoral sites. Moreover, a high proportion of Tregs in tumor tissues may reflect suppressed antitumor immunity.
Cancer Letters | 2014
Shixiang Guo; Xuejun Xu; Yichen Tang; Chaobin Zhang; Jian Li; Yongsheng Ouyang; Jingfang Ju; Ping Bie; Huaizhi Wang
PURPOSES To investigate whether miR-15a inhibits cell proliferation and epithelial-mesenchymal transition (EMT) in pancreatic ductal adenocarcinoma (PDAC) via the down-regulation of B cell-specific moloney murine leukemia virus insertion site 1 (Bmi-1) expression. METHODS AND RESULTS miR-15a and Bmi-1 expressions in normal pancreatic tissue and PDAC tissue were measured. The relationship between miR-15a and Bmi-1 expression was analyzed. We found that miR-15a suppressed the expression of Bmi-1 and PDAC cell proliferation; E-cadherin expression was visibly up-regulated after silencing Bmi-1 by transfecting miR-15a into PDAC cell line. CONCLUSION miR-15a inhibits cell proliferation and EMT in PDAC via the down-regulation of Bmi-1 expression.
Journal of Gastrointestinal Surgery | 2011
Jin Chai; Donglin Luo; Xiaoping Wu; Huaizhi Wang; Yu He; Qiong Li; Yanmei Zhang; Lei Chen; Zhihong Peng; Tianli Xiao; Rongquan Wang; Wensheng Chen
BackgroundHepatic multidrug resistance-associated protein 4 (Mrp4) levels are low, but increase markedly in rodent cholestatic liver. Nuclear receptors (NRs) are essential for regulating Mrp4 expression in cholestasis models. However, information about MRP4 and related NRs, including constitutive androstane receptor (CAR), pregnane X receptor (PXR), and retinoic X receptor-α (RXRα), is relatively lacking in human obstructive cholestasis. We collected liver samples from patients with obstructive cholestasis or without liver disease and investigated the expression of MRP4 and NRs CAR, PXR, and RXRα by semi-quantitative RT-PCR, Western blot and immunostaining assays.ResultsMRP4 mRNA/protein levels were markedly increased in obstructive cholestasis. Concentration of serum total bile acids (TBA) was significantly correlated with MRP4 protein in cholestasis samples (P < 0.01). PXR and RXRα mRNA/protein levels were significantly increased in obstructive cholestasis. CAR mRNA levels were unchanged while protein levels were markedly induced in obstructive cholestasis. There was a statistically positive correlation between MRP4 mRNA and CAR protein (P < 0.05), suggesting that CAR may activate transcription of MRP4 genes by its nuclear translocation.ConclusionHepatic MRP4 levels were dramatically induced in human obstructive cholestasis, which may reduce liver injury by increasing efflux of toxic bile acids from hepatocytes into blood.
Pancreas | 2014
Xuejun Xu; Yichen Tang; Shixiang Guo; Yi Zhang; Yi Tian; Bing Ni; Huaizhi Wang
Objective The objective of this study was to investigate the expression and clinical relevance of interleukin 22 (IL-22) and IL-22–producing CD4+ T cells (IL-22+CD4+ T cells) in pancreatic cancer (PC) tissues. Methods Interleukin 22 protein levels in PC tissues were measured by Western blot analysis and immunohistochemistry. The frequencies of IL-22+CD4+ T cells in tumors and peripheral blood from PC patients and control subjects were analyzed by flow cytometry. The association between IL-22 and phosphorylation of STAT-3 was investigated in in vitro model. Results Interleukin 22 protein was more highly expressed in PC tissues than in peritumoral and normal pancreatic tissues. The frequencies of all IL-22+CD4+ T cells and T helper 22 (TH22) cells (IL-22+IFN-&ggr;−IL-17-CD4+) were significantly higher in PC tissues than in the peripheral blood of PC patients and control subjects. It was observed that up-regulation pSTAT-3 and its downstream genes such as Bcl-2 and cyclin D1 in vitro. Finally, we found that increased intratumoral IL-22 expression and frequencies of TH22 and IL-22+CD4+ T cells were positively correlated with PC tumor-node-metastasis staging. Conclusions Increased intratumoral IL-22 levels, IL-22+CD4+ T cells, and TH22 cells are correlated with PC tumor-node-metastasis staging, suggesting that IL-22 and IL-22+CD4+ T cells may be related to tumor progression and are potential therapeutic targets in patients with PC.
PLOS ONE | 2015
Jin Chai; Xinchan Feng; Liangjun Zhang; Sheng Chen; Ying Cheng; Xiaochong He; Yingxue Yang; Yu He; Huaizhi Wang; Rongquan Wang; Wensheng Chen
Background & Aims Levels of bile acid metabolic enzymes and membrane transporters have been reported to change in cholestasis. These alterations (e.g. CYP7A1 repression and MRP4 induction) are thought to be adaptive responses that attenuate cholestatic liver injury. However, the molecular mechanisms of these adaptive responses in human obstructive cholestasis due to gallstone biliary obstruction remain unclear. Methods We collected liver samples from cholestatic patients with biliary obstruction due to gallstones and from control patients without liver disease (n = 22 per group). The expression levels of bile acid synthetic and detoxification enzymes, membrane transporters, and the related nuclear receptors and transcriptional factors were measured. Results The levels of bile acid synthetic enzymes, CYP7B1 and CYP8B1, and the detoxification enzyme CYP2B6 were increased in cholestatic livers by 2.4-fold, 2.8-fold, and 1.9-fold, respectively (p<0.05). Conversely, the expression levels of liver detoxification enzymes, UGT2B4/7, SULT2A1, GSTA1-4, and GSTM1-4, were reduced by approximately 50% (p<0.05) in human obstructive cholestasis. The levels of membrane transporters, OSTβ and OCT1, were increased 10.4-fold and 1.8-fold, respectively, (p<0.05), whereas those of OSTα, ABCG2 and ABCG8 were all decreased by approximately 40%, (p<0.05) in human cholestatic livers. Hepatic nuclear receptors, VDR, HNF4α, RXRα and RARα, were induced (approximately 2.0-fold, (p<0.05) whereas FXR levels were markedly reduced to 44% of control, (p<0.05) in human obstructive cholestasis. There was a significantly positive correlation between the reduction in FXR mRNA and UGT2B4/7, SULT2A1, GSTA1, ABCG2/8 mRNA levels in livers of obstructive cholestatic patients (p<0.05). Conclusions The levels of hepatic detoxification enzymes were significantly decreased in human obstructive cholestasis, and these decreases were positively associated with a marked reduction of FXR levels. These findings are consistent with impaired detoxification ability in human obstructive cholestasis.
Journal of Hepatology | 2015
Jin Chai; Shi-Ying Cai; Xiaocong Liu; Wei Lian; Sheng Chen; Liangjun Zhang; Xinchan Feng; Ying Cheng; Xiaochong He; Yu He; Lei Chen; Rongquan Wang; Huaizhi Wang; James L. Boyer; Wensheng Chen
BACKGROUND & AIMS Multidrug resistance-associated protein 2 (MRP2) excretes conjugated organic anions including bilirubin and bile acids. Malfunction of MRP2 leads to jaundice in patients. Studies in rodents indicate that Radixin plays a critical role in determining Mrp2 canalicular membrane expression. However, it is not known how human hepatic MRP2 expression is regulated in cholestasis. METHODS We assessed liver MRP2 expression in patients with obstructive cholestasis caused by gallstone blockage of bile ducts, and investigated the regulatory mechanism in HepG2 cells. RESULTS Western blot detected that liver MRP2 protein expression in obstructive cholestatic patients (n=30) was significantly reduced to 25% of the non-cholestatic controls (n=23). Immunoprecipitation identified Ezrin but not Radixin associating with MRP2 in human livers, and the increased amount of phospho-Ezrin Thr567 was positively correlated with the amount of co-precipitated MRP2 in cholestatic livers, whereas Ezrin and Radixin total protein levels were unchanged in cholestasis. Further detailed studies indicate that Ezrin Thr567 phosphorylation plays an important role in MRP2 internalization in HepG2 cells. Since increased expression of PKCα, δ and ε were detected in these cholestatic livers, we further confirmed that these PKCs stimulated Ezrin phosphorylation and reduced MRP2 membrane expression in HepG2 cells. Finally, we identified GP78 as the key ubiquitin ligase E3 involved in MRP2 proteasome degradation. CONCLUSIONS Activation of liver PKCs during cholestasis leads to Ezrin Thr567 phosphorylation resulting in MRP2 internalization and degradation where ubiquitin ligase E3 GP78 is involved. This process provides a mechanistic explanation for jaundice seen in patients with obstructive cholestasis.
Tumor Biology | 2016
Yongsheng Ouyang; Juncheng Pan; Qiang Tai; Jingfang Ju; Huaizhi Wang
The promotion of tumor development by Dickkopf 4 (DKK4) is receiving increased attention. However, the association between DKK4 and pancreatic cancer remains unclear. DKK4 expression was measured in pancreatic ductal adenocarcinoma tissues using qRT-PCR and immunohistochemistry. A DKK4-overexpressing pancreatic cancer cell line was established, and the differentially expressed genes (DEGs) that were induced by DKK4 were identified using transcriptome sequencing. The association between the identified DEGs and pancreatic cancer was assessed using gene ontology (GO), pathway analysis, pathway interaction networks, differentially expressed gene interaction network analysis, and co-expression gene networks. Finally, the accuracy of the analyses was validated using serial paraffin and frozen sections of clinical samples. DKK4 is highly expressed in pancreatic cancer tissues. DEGs of overexpression DKK4 of PANC-1 are mostly upregulated. GO and pathway analysis showed that DKK4 are associated with tumor and organ development and immune inflammation. The mitogen-activated protein kinase (MAPK) signaling pathway was the main signal transduction pathway that showed significant enrichment in overexpression DKK4 of PANC-1. The results of GO, pathway analyses, and differentially expressed gene interaction network identified genes that are closely associated with tumor development, including MAPK3, PIK3R3, VAV3, JAG1, and Notch3. The immunohistochemistry and immunofluorescence results suggested that DKK4 is co-expressed with MAPK3 and VAV3 in pancreatic cancer tissues. The results presented here show for the first time that DKK4 is highly expressed in pancreatic cancer tissues. Bioinformatics analysis of a DKK4-overexpressing of PANC-1 identified several oncogenes that are closely associated with tumors, and the MAPK signaling pathway is the core signal transduction pathway. DKK4 can be co-expressed with MAPK3 and VAV3 in pancreatic ductal adenocarcinoma tissues. Thus, DKK4 may have function on the development and progression of pancreatic cancer.
Cancer Letters | 2017
Xuejun Xu; Zhiping Zhao; Shixiang Guo; Jian Li; Songsong Liu; Yu You; Bing Ni; Huaizhi Wang; Ping Bie
Pancreatic cancer is characterized by neural alterations and aberrant expression of neural-specific factors. Semaphorins have been recognized as key contributors in axon guidance, the immune response and tumor progression. Recent studies have suggested the involvement of Semaphorin 3c (sema3c) in tumorigenesis and metastasis in numerous types of cancer, however, the clinical significance of sema3c and its role in the growth and metastasis of pancreatic ductal adenocarcinoma (PDAC) remain unclear. In this study, we found that aberrant sema3c expression was positively associated with a particular tumor stage and correlated with poor survival of PDAC patients. Knockdown of sema3c attenuated proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) in a pancreatic cancer cell line and reduced PDAC cell tumorigenesis upon xenotransplantation into NOD/SCID mice. Overexpression of sema3c produced the opposite effects and promoted the extracellular signal-regulated kinase (ERK)1/2 signaling pathway. Overall, our findings demonstrate that aberrant expression of sema3c is correlated with poor prognosis of PDAC patients and promotes tumor growth and metastasis by activating ERK1/2 signaling pathway.
Oncotarget | 2016
Jian Li; Jingfang Ju; Bing Ni; Huaizhi Wang
MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression. They are involved in almost all biological processes, and many have been identified as potential oncogenes or tumor suppressor genes. miR-506 was recently discovered to play pivotal roles in regulating cell proliferation, differentiation, migration and invasion. Dysregulation of miR-506 has been demonstrated in multiple types of cancers; however, whether it functions as an oncogene or a tumor suppressor seems to be context-dependent. Altered miR-506 expression in cancer is caused by promoter methylation and changes in upstream transcription factors. In this review, we summarize the current understanding of the diverse roles and underlying mechanisms of miR-506 and its involvement in cancer, and suggest the potential therapeutic strategy based on miR-506.
Oncotarget | 2017
Yunchao Wang; Jian Li; Shixiang Guo; Yongsheng Ouyang; Liangyu Yin; Songsong Liu; Zhiping Zhao; Jiali Yang; Wen-Jie Huang; Huan Qin; Xin Zhao; Bing Ni; Huaizhi Wang
Lin28B, a Lin28 homologue, represses the biogenesis of let-7 microRNAs (miRNAs), has a role in tumorigenesis, and is considered a potential therapeutic target for various human malignancies. However, the associations between Lin28B and the clinical features and outcomes of patients with pancreatic ductal adenocarcinoma (PDAC) remain unclear. In this study, we explored the clinical significance of Lin28B in PDAC and its association with metastasis by examining tissues from patients with PDAC and elucidated the molecular mechanisms using PDAC cell lines. In patients, high Lin28B expression was significantly correlated with high levels of lymphatic metastasis, distant metastasis and a poor prognosis. Furthermore, the multivariate analysis identified Lin28B expression as an independent prognostic factor in patients. In cell lines, stable silencing of Lin28B inhibited cell proliferation, cell cycle transition, migration and the epithelial-mesenchymal transition (EMT). It also increased the expression of the c-MYC, HMGA2 and KRAS genes, which are targeted by the cancer-suppressor miRNA let-7. Lin28B overexpression in the PDAC cell lines had the opposite effect. In human PDAC samples, high Lin28B expression was associated with decreased let-7 expression and increased c-MYC, HMGA2 and KRAS expression. Thus, Lin28B is a novel marker for predicting the prognosis of patients with PDAC and might be a potential therapeutic target for PDAC.