Huajian Wang
China National Petroleum Corporation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Huajian Wang.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Shuichang Zhang; Xiaomei Wang; Huajian Wang; Christian J. Bjerrum; Emma U. Hammarlund; M. Mafalda Costa; James N. Connelly; Baomin Zhang; Jin Su; Donald E. Canfield
Significance How have environmental constraints influenced the timing of animal evolution? It is often argued that oxygen first increased to sufficient levels for animal respiration during the Neoproterozoic Eon, 1,000 million to 542 million years ago, thus explaining the timing of animal evolution. We report geochemical evidence for deep-water oxygenation below an ancient oxygen minimum zone 1,400 million years ago. Oceanographic modeling constrains atmospheric oxygen to a minimum of ∼4% of today’s values, sufficient oxygen to have fueled early-evolved animal clades. Therefore, we suggest that there was sufficient atmospheric oxygen for animals long before the evolution of animals themselves, and that rising levels of Neoproterozoic oxygen did not contribute to the relatively late appearance of animal life on Earth. The Mesoproterozoic Eon [1,600–1,000 million years ago (Ma)] is emerging as a key interval in Earth history, with a unique geochemical history that might have influenced the course of biological evolution on Earth. Indeed, although this time interval is rather poorly understood, recent chromium isotope results suggest that atmospheric oxygen levels were <0.1% of present levels, sufficiently low to have inhibited the evolution of animal life. In contrast, using a different approach, we explore the distribution and enrichments of redox-sensitive trace metals in the 1,400 Ma sediments of Unit 3 of the Xiamaling Formation, North China Block. Patterns of trace metal enrichments reveal oxygenated bottom waters during deposition of the sediments, and biomarker results demonstrate the presence of green sulfur bacteria in the water column. Thus, we document an ancient oxygen minimum zone. We develop a simple, yet comprehensive, model of marine carbon−oxygen cycle dynamics to show that our geochemical results are consistent with atmospheric oxygen levels >4% of present-day levels. Therefore, in contrast to previous suggestions, we show that there was sufficient oxygen to fuel animal respiration long before the evolution of animals themselves.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Shuichang Zhang; Xiaomei Wang; Emma U. Hammarlund; Huajian Wang; M. Mafalda Costa; Christian J. Bjerrum; James N. Connelly; Baomin Zhang; Lizeng Bian; Donald E. Canfield
Significance There is a wealth of evidence pointing to dramatic short-term climate change on Earth over the last few million years. Much of this climate change is driven by variations of Earth’s orbit around the Sun with characteristic frequencies known as Milankovitch cycles. Robust evidence for orbitally driven climate change, however, becomes rare as one descends deep into Earth time. We studied an exceptional record of climate change as recorded in 1.4-billion-year-old marine sediments from North China. This record documents regular changes in subtropical/tropical Hadley Cell dynamics. These changes in dynamics controlled wind strength, rainfall, and ocean circulation, translated into cyclic variations in sediment geochemistry, much like the orbital control on climate today and in the recent past. Fluctuating climate is a hallmark of Earth. As one transcends deep into Earth time, however, both the evidence for and the causes of climate change become difficult to establish. We report geochemical and sedimentological evidence for repeated, short-term climate fluctuations from the exceptionally well-preserved ∼1.4-billion-year-old Xiamaling Formation of the North China Craton. We observe two patterns of climate fluctuations: On long time scales, over what amounts to tens of millions of years, sediments of the Xiamaling Formation record changes in geochemistry consistent with long-term changes in the location of the Xiamaling relative to the position of the Intertropical Convergence Zone. On shorter time scales, and within a precisely calibrated stratigraphic framework, cyclicity in sediment geochemical dynamics is consistent with orbital control. In particular, sediment geochemical fluctuations reflect what appear to be orbitally forced changes in wind patterns and ocean circulation as they influenced rates of organic carbon flux, trace metal accumulation, and the source of detrital particles to the sediment.
AAPG Bulletin | 2016
Jin Su; Shuichang Zhang; Haiping Huang; Yu Wang; Huitong Wang; Kun He; Xiaomei Wang; Bin Zhang; Huajian Wang
Huge, high gas–oil ratio, hydrogen sulfide (H2S)-bearing gas condensate accumulations were recently discovered in the Ordovician carbonate reservoirs of the Tazhong uplift in the Tarim Basin, northwest China. Distinct differences exist between the eastern and western condensates in terms of chemical and isotopic compositions. Condensates from the western part of the uplift were characterized by high dibenzothiophenes (generally >500 μg/g), a high H2S concentration (∼7%, vol./vol.), and relatively depleted 13C methane (δ13C1 = −55.5‰ to −36‰). The H2S concentration in the Tazhong gas condensates shows a positive correlation to Mg2+ concentration in the formation water. Formation water in Lower Ordovician–Cambrian strata in the Tazhong uplift is rich in Mg2+, which facilitates the thermochemical sulfate reduction (TSR) of sulfate contact ion pairs (CIPs) to produce H2S and dibenzothiophenes. A detailed comparison of the chemical compositions of the formation waters in different strata indicates that a high H2S concentration in the Tazhong gas condensates originates from the TSR of sulfate CIPs in the Lower Ordovician–Cambrian strata, where a primary oil accumulation may have existed. The concentrations of 3- and 4-methyldiamantanes in the western condensates (80 to 150 μg/g) are relatively lower than those from the eastern part of the uplift. Also, the δ13C1 in the western H2S-bearing gas condensates was more negative, and the δ13C2 − δ13C1 value was larger than that from typical TSR-altered gases. These features indicate that the western Tazhong samples had just entered the initial stage of TSR. According to the pressure, volume, temperature (PVT) phase diagram, the lower Paleozoic section was quickly buried after the Tortonian. High-H2S hydrocarbon inclusions formed during the last 10 m.y. when paleotemperatures reached 140°C (284°F). Because the reaction rate of the sulfate CIPs oxidation was relatively slower than that of H2S autocatalysis during the entire TSR process, advanced TSR has not been accomplished yet. It is also inferred that the Tortonian was the key period for accumulation of secondary H2S-bearing gas condensates, resulting from abundant gas washing along deep fractures and charging in the early reservoirs. An increased aromaticity parameter (toluene/n-heptane) and an increased fractionation index from east to west indicate an intensified degree of gas washing. Different gas-washing intensities in the eastern and western gas condensates led to diverse PVT states as well. Deep strata in the Tazhong uplift were characterized by multiple charges and mixing, coupled with periodic TSR, leading to the occurrence of variable H2S-bearing gas condensates.
American Journal of Science | 2017
Xiaomei Wang; Shuichang Zhang; Huajian Wang; Christian J. Bjerrum; Emma U. Hammarlund; Emma R. Haxen; Jin Su; Yu Wang; Donald E. Canfield
The Xiamaling Formation is an exceptionally well-preserved sedimentary succession deposited on a marine passive margin about 1400 million years ago. We used a multi-proxy approach, including iron speciation, trace metal dynamics, and organic geochemistry, to explore the evolution of ocean chemistry through most of the Xiamaling Formation. This evolution is put in the context of the paleogeography and the sedimentological evolution of the Xiamaling depositional system. Overall, the Xiamaling Formation is informally divided into six units based on both sedimentological and geochemical criteria. Of the six units, we fully explored four of them. Unit 4, the lowest unit we studied, is comprised of deep-water red muds, periodically interrupted by green-colored silt and sandy turbidites. Iron extraction results show that the red muds are enriched in highly reactive iron, indicating a water-column source for the iron. However, the low organic carbon contents, low hydrogen index (HI) values, and the oxidized nature of the reactive iron pool indicate deposition in oxygenated bottom waters. We interpret unit 4 to represent a low-productivity ferruginous oxygen-minimum zone (OMZ) environment, underlain by oxygenated bottom waters. The transition to unit 3 reflects an increase in primary productivity, and the development of a more biologically active OMZ, that supported anoxygenic phototrophic bacteria. Still, in this unit, the bottom waters remained oxygenated. The overlying unit 2 represents the transition to deep-water deoxygenation and anoxic waters at the sediment surface. These waters were ferruginous in the bottom part of the unit and sulfidic (euxinic) towards the top. In the uppermost unit 1, euxinic conditions continued, punctuated by more frequent water-column oxygenation towards the upper part of the unit. We place the evolution of these chemical dynamics in the context of climate and climate change, and in particular, the placement of the Xiamaling Formation in relation to the Intertropical Convergence Zone (ITCZ) and the resulting Hadley Cell dynamics. Also, while our results demonstrate the persistence of anoxic water-column conditions high in the water column during the deposition of the Xiamaling Formation, they also demonstrate bottom water oxygenation near the seafloor during the deposition of three of the four units, and over a time interval extending to 10s of millions of years.
Petroleum Exploration and Development | 2017
Xiaomei Wang; Shuichang Zhang; Huajian Wang; Jin Su; Kun He; Yu Wang; Xiaoqi Wang
Abstract Taking Mesoproterozoic Xiamaling Formation, Northern China as an example, the heterogeneities of source rock in different scales and hydrocarbon microscopic occurrence are studied based on observation of outcrops and observation with microscopy, and geochemical analysis. The large scale heterogeneities of source rocks are considered to be controlled by the plate movement and paleo-latitude location, while the micro-scale might be controlled by climate changes driven by the astronomical orbit. The constant existence of heterogeneities includes the differences of organic matter, debris sources and porosities. The heterogeneities of source rock should be seriously treated during the evaluation of oil and gas resources, especially the unconventional oil and gas. This kind of heterogeneous source rocks provides excellent source-reservoir assemblage of oil and gas generation, expulsion and accumulation, and new reference indexes for the economic evaluation of unconventional oil and gas. Therefore, quantitative study of the heterogeneity of source rock is of great significance for investigating formation mechanism and resource estimation of unconventional oil and gas.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Shuichang Zhang; Xiaomei Wang; Huajian Wang; Christian J. Bjerrum; Emma U. Hammarlund; Tais Wittchen Dahl; Donald E. Canfield
Planavsky et al. (1) argue that variability in the V/Al of soils compromises our ability to detect V depletions and thus oxygenated bottom waters in the Xiamaling Formation. Indeed, because of such variability, we explored trace metal chemistry through several units of the Xiamaling Formation to establish V/Al background values and trace metal behavior. Unit 4 lacks trace metal enrichments, with V/Al values distributed around the crustal average (CA) (Fig. 1 A ), which we take to represent unaltered particles entering the basin. In contrast, unit 3 was enriched in Mo and U, with V/Al either depleted or similar to CA (Fig. 1 A ). These trace metal patterns are, in the modern ocean, uniquely found in organic-rich sediments depositing in oxygenated water (2). In contrast, unit 2 was enriched in V, … [↵][1]1To whom correspondence should be addressed. Email: sczhang{at}petrochina.com.cn. [1]: #xref-corresp-1-1
Petroleum Science | 2017
Yu-Wen Cai; Shuichang Zhang; Kun He; Jingkui Mi; Wenlong Zhang; Xiaomei Wang; Huajian Wang; Chao-Dong Wu
In order to investigate the impact of U-ore on organic matter maturation and isotopic fractionation, we designed hydrous pyrolysis experiments on Type-II kerogen samples, supposing that the water and water–mineral interaction play a role. U-ore was set as the variable for comparison. Meanwhile, anhydrous pyrolysis under the same conditions was carried out as the control experiments. The determination of liquid products indicates that the presence of water and minerals obviously enhanced the yields of C15+ and the amounts of hydrocarbon and non-hydrocarbon gases. Such results may be attributed to water-organic matter reaction in the high-temperature system, which can provide additional hydrogen and oxygen for the generation of gas and liquid products from organic matter. It is found that δD values of hydrocarbon gases generated in both hydrous pyrolysis experiments are much lower than those in anhydrous pyrolysis. What is more, δD values are lower in the hydrous pyrolysis with uranium ore. Therefore, we can infer that water-derived hydrogen played a significant role during the kerogen thermal evolution and the hydrocarbon generation in our experiments. Isotopic exchange was facilitated by the reversible equilibration between reaction intermediaries with hydrogen under hydrothermal conditions with uranium ore. Carbon isotopic fractionations of hydrocarbon gases were somehow affected by the presence of water and the uranium ore. The increased level of i-C4/n-C4 ratios for gas products in hydrous pyrolysis implied the carbocation mechanism for water-kerogen reactions.
Petroleum Science | 2017
Jin Su; Yu Wang; Xiaomei Wang; Kun He; Haijun Yang; Huitong Wang; Huajian Wang; Bin Zhang; Ling Huang; Na Weng; Li-Na Bi; Zhi-Hua Xiao
A number of condensate reservoirs with high concentrations of H2S have been discovered in the deep dolomite reservoirs of the lower Ordovician Yingshan Formation (O1y) in the Tazhong Uplift, where the formation water has a high pH value. In the O1y reservoir, the concentrations of Mg2+ and SO42− in the formation water are higher than those in the upper Ordovician formation. The concentration of H2S in the condensate reservoirs and the concentration of Mg2+ in the formation water correlate well in the O1y reservoirs of the Tazhong Uplift, which indicates a presumed thermochemical sulfate reduction (TSR) origin of H2S according to the oxidation theory of contact ion-pairs (CIPs). Besides, the pH values of the formation water are positively correlated with the concentration of H2S in the condensate reservoirs, which may indicate that high pH might be another factor to promote and maintain TSR. Oil–source correlation of biomarkers in the sulfuretted condensates indicates the Cambrian source rocks could be the origin of condensates. The formation water in the condensate reservoirs of O1y is similar to that in the Cambrian; therefore, the TSR of sulfate-CIPs likely occurred in the Cambrian. High H2S-bearing condensates are mainly located near the No. 1 Fault and NE-SW strike-slip faults, which are the major migration pathway of deep fluids in the Tazhong Uplift. The redox between sulfate-CIPs and hydrocarbons is the generation mechanism of H2S in the deep dolomite condensate reservoirs of the Tazhong Uplift. This finding should be helpful to predict the fluid properties of deep dolomite reservoirs.
Chinese Journal of Analytical Chemistry | 2016
Huajian Wang; Shuichang Zhang; Yun-Tao Ye; Xiaomei Wang; Wen-Xi Zhou; Jin Su
Abstract A method of in situ multi-elements 2D imaging on single pyrite was developed using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Nine elements and 50 thousands valid data were acquired in a 1 mm × 1 mm scanning area, with the total analyzed time of 1.5 h. The data showed that the signals of Fe and S were uniformly distributed on the pyrite, and the ratio data of Fe/S was centralized with a lower relative standard deviation of 11.6%, indicating the good homogeneity of the pyrite and stability of this method. Compared with the surrounding black shale, the detected trace elements on the pyrite showed different degrees of enrichment or losses, might be the response of the redox environment during this pyrite forming or the later secondary reforming process. This method will help the popularization and application of LA-ICP-MS in single mineral particles analysis, and provide more direct and accurate visual data for the study of paleoenvironment, source rock and fluid accumulation.
Scientific Reports | 2018
Xiaomei Wang; Wenzhi Zhao; Shuichang Zhang; Huajian Wang; Jin Su; Donald E. Canfield; Emma U. Hammarlund
The Xiamaling Formation in the North China Block contains a well-preserved 1400 Ma sedimentary sequence with a low degree of thermal maturity. Previous studies have confirmed the dynamic and complex nature of this evolving marine setting, including the existence of an oxygen-minimum zone, using multi-proxy approaches, including iron speciation, trace metal dynamics, and organic geochemistry. Here, we investigate the prevailing redox conditions during diagenesis via the biomarkers of rearranged hopanes from the finely laminated sediments of the organic-rich black shales in Units 2 and 3 of the Xiamaling Formation. We find that rearranged hopanes are prominent in the biomarker composition of the oxygen-minimum zone sediment, which is completely different from that of the sediment in the overlying anoxic strata. Since the transition process from hopanes to rearranged hopanes requires oxygen via oxidation at the C-l6 alkyl position of 17α(H)-hopanes, we infer that dissolved oxygen led to the transformation of hopane precursors into rearranged hopanes during the early stages of diagenesis. The use of hopanoid hydrocarbons as biomarkers of marine redox conditions has rarely been previously reported, and the hydrocarbon signatures point towards oxic bottom waters during the deposition of Unit 3 of the Xiamaling Formation, which is consistent with the earlier oxygen-minimum zone environmental interpretation of this Unit.