Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huakun Zhang is active.

Publication


Featured researches published by Huakun Zhang.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Persistent whole-chromosome aneuploidy is generally associated with nascent allohexaploid wheat

Huakun Zhang; Yao Bian; Xiaowan Gou; Bo Zhu; Chunming Xu; Bao Qi; Ning Li; Sachin Rustgi; Hao Zhou; Fangpu Han; Jiming Jiang; Diter von Wettstein; Bao Liu

Allopolyploidization has been a driving force in plant evolution. Formation of common wheat (Triticum aestivum L.) represents a classic example of successful speciation via allopolyploidy. Nevertheless, the immediate chromosomal consequences of allopolyploidization in wheat remain largely unexplored. We report here an in-depth investigation on transgenerational chromosomal variation in resynthesized allohexaploid wheats that are identical in genome constitution to common wheat. We deployed sequential FISH, genomic in situ hybridization (GISH), and homeolog-specific pyrosequencing, which enabled unequivocal identification of each of the 21 homologous chromosome pairs in each of >1,000 individual plants from 16 independent lines. We report that whole-chromosome aneuploidy occurred ubiquitously in early generations (from selfed generation S1 to >S20) of wheat allohexaploidy although at highly variable frequencies (20–100%). In contrast, other types of gross structural variations were scant. Aneuploidy included an unexpected hidden type, which had a euploid chromosome number of 2n = 42 but with simultaneous loss and gain of nonhomeologous chromosomes. Of the three constituent subgenomes, B showed the most lability for aneuploidy, followed by A, but the recently added D subgenome was largely stable in most of the studied lines. Chromosome loss and gain were also unequal across the 21 homologous chromosome pairs. Pedigree analysis showed no evidence for progressive karyotype stabilization even with multigenerational selection for euploidy. Profiling of two traits directly related to reproductive fitness showed that although pollen viability was generally reduced by aneuploidy, the adverse effect of aneuploidy on seed-set is dependent on both aneuploidy type and synthetic line.


BMC Biology | 2012

Global transgenerational gene expression dynamics in two newly synthesized allohexaploid wheat (Triticum aestivum) lines

Bao Qi; Wei Huang; Bo Zhu; Xiaofang Zhong; Jianhua Guo; Na Zhao; Chunming Xu; Huakun Zhang; Jinsong Pang; Fangpu Han; Bao Liu

BackgroundAlteration in gene expression resulting from allopolyploidization is a prominent feature in plants, but its spectrum and extent are not fully known. Common wheat (Triticum aestivum) was formed via allohexaploidization about 10,000 years ago, and became the most important crop plant. To gain further insights into the genome-wide transcriptional dynamics associated with the onset of common wheat formation, we conducted microarray-based genome-wide gene expression analysis on two newly synthesized allohexaploid wheat lines with chromosomal stability and a genome constitution analogous to that of the present-day common wheat.ResultsMulti-color GISH (genomic in situ hybridization) was used to identify individual plants from two nascent allohexaploid wheat lines between Triticum turgidum (2n = 4x = 28; genome BBAA) and Aegilops tauschii (2n = 2x = 14; genome DD), which had a stable chromosomal constitution analogous to that of common wheat (2n = 6x = 42; genome BBAADD). Genome-wide analysis of gene expression was performed for these allohexaploid lines along with their parental plants from T. turgidum and Ae. tauschii, using the Affymetrix Gene Chip Wheat Genome-Array. Comparison with the parental plants coupled with inclusion of empirical mid-parent values (MPVs) revealed that whereas the great majority of genes showed the expected parental additivity, two major patterns of alteration in gene expression in the allohexaploid lines were identified: parental dominance expression and non-additive expression. Genes involved in each of the two altered expression patterns could be classified into three distinct groups, stochastic, heritable and persistent, based on their transgenerational heritability and inter-line conservation. Strikingly, whereas both altered patterns of gene expression showed a propensity of inheritance, identity of the involved genes was highly stochastic, consistent with the involvement of diverse Gene Ontology (GO) terms. Nonetheless, those genes showing non-additive expression exhibited a significant enrichment for vesicle-function.ConclusionsOur results show that two patterns of global alteration in gene expression are conditioned by allohexaploidization in wheat, that is, parental dominance expression and non-additive expression. Both altered patterns of gene expression but not the identity of the genes involved are likely to play functional roles in stabilization and establishment of the newly formed allohexaploid plants, and hence, relevant to speciation and evolution of T. aestivum.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Evolution of physiological responses to salt stress in hexaploid wheat

Chunwu Yang; Long Zhao; Huakun Zhang; Zongze Yang; Huan Wang; Shanshan Wen; Chunyu Zhang; Sachin Rustgi; Diter von Wettstein; Bao Liu

Significance Hexaploid bread wheat is generally more salt tolerant than its tetraploid progenitor. However, the physiological bases and the relative contributions of immediate effects of polyploidization and subsequently acquired adaptive changes in the salt tolerance of hexaploid wheat remained elusive. This study compared a large suite of morphophysiological traits in synthetic and natural hexaploid wheats, and their tetraploid and diploid progenitors, under normal and salt-stressed conditions, and studied subgenome-specific expression of a critical salt-tolerance gene, HKT1;5. Results have thrown light on the major physiological bases underlying salt tolerance of hexaploid wheat and revealed polyploidy-induced alteration in gene regulation under salt stress. These allopolyploidization-induced immediate molecular and physiological changes showed evolutionary perseverance and hence bear implications for polyploid crop improvement. Hexaploid bread wheat (Triticum aestivum L., genome BBAADD) is generally more salt tolerant than its tetraploid wheat progenitor (Triticum turgidum L.). However, little is known about the physiological basis of this trait or about the relative contributions of allohexaploidization and subsequent evolutionary genetic changes on the trait development. Here, we compared the salt tolerance of a synthetic allohexaploid wheat (neo-6x) with its tetraploid (T. turgidum; BBAA) and diploid (Aegilops tauschii; DD) parents, as well as a natural hexaploid bread wheat (nat-6x). We studied 92 morphophysiological traits and analyzed homeologous gene expression of a major salt-tolerance gene High-Affinity K+ Transporter 1;5 (HKT1;5). We observed that under salt stress, neo-6x exhibited higher fitness than both of its parental genotypes due to inheritance of favorable traits like higher germination rate from the 4x parent and the stronger root Na+ retention capacity from the 2x parent. Moreover, expression of the D-subgenome HKT1;5 homeolog, which is responsible for Na+ removal from the xylem vessels, showed an immediate transcriptional reprogramming following allohexaploidization, i.e., from constitutive high basal expression in Ae. tauschii (2x) to salt-induced expression in neo-6x. This phenomenon was also witnessed in the nat-6x. An integrated analysis of 92 traits showed that, under salt-stress conditions, neo-6x resembled more closely the 2x than the 4x parent, suggesting that the salt stress induces enhanced expressivity of the D-subgenome homeologs in the synthetic hexaploid wheat. Collectively, the results suggest that condition-dependent functionalization of the subgenomes might have contributed to the wide-ranging adaptability of natural hexaploid wheat.


Genetics | 2011

Extensive and Heritable Epigenetic Remodeling and Genetic Stability Accompany Allohexaploidization of Wheat

Na Zhao; Bo Zhu; Mingjiu Li; Li Wang; Liying Xu; Huakun Zhang; Shuangshuang Zheng; Bao Qi; Fangpu Han; Bao Liu

Allopolyploidy has played a prominent role in organismal evolution, particularly in angiosperms. Allohexaploidization is a critical step leading to the formation of common wheat as a new species, Triticum aestivum, as well as for bestowing its remarkable adaptability. A recent study documented that the initial stages of wheat allohexaploidization was associated with rampant genetic and epigenetic instabilities at genomic regions flanking a retrotransposon family named Veju. Although this finding is in line with the prevailing opinion of rapid genomic instability associated with nascent plant allopolyploidy, its relevance to speciation of T. aestivum remains unclear. Here, we show that genetic instability at genomic regions flanking the Veju, flanking a more abundant retroelement BARE-1, as well as at a large number of randomly sampled genomic loci, is all extremely rare or nonexistent in preselected individuals representing three sets of independently formed nascent allohexaploid wheat lines, which had a transgenerationally stable genomic constitution analogous to that of T. aestivum. In contrast, extensive and transgenerationally heritable repatterning of DNA methylation at all three kinds of genomic loci were reproducibly detected. Thus, our results suggest that rampant genetic instability associated with nascent allohexaploidization in wheat likely represents incidental and anomalous phenomena that are confined to by-product individuals inconsequential to the establishment of the newly formed plants toward speciation of T. aestivum; instead, extensive and heritable epigenetic remodeling coupled with preponderant genetic stability is generally associated with nascent wheat allohexaploidy, and therefore, more likely a contributory factor to the speciation event(s).


Proceedings of the National Academy of Sciences of the United States of America | 2013

Intrinsic karyotype stability and gene copy number variations may have laid the foundation for tetraploid wheat formation

Huakun Zhang; Yao Bian; Xiaowan Gou; Yuzhu Dong; Sachin Rustgi; Bangjiao Zhang; Chunming Xu; Ning Li; Bao Qi; Fangpu Han; Diter von Wettstein; Bao Liu

Significance This paper discusses speciation by allopolyploidy of tetraploid wheat, which in turn is a milestone event in establishing hexaploid bread wheat. The results suggested that karyotype stabilization together with variation in copy number of coding genes and localized changes in genomic repeats may have contributed to the establishment of tetraploid wheat as successful species. These observations are of relevance to the plant-breeding community for developing unique wheat cultivars by wide-hybridization and chromosomal engineering. Polyploidy or whole-genome duplication is recurrent in plant evolution, yet only a small fraction of whole-genome duplications has led to successful speciation. A major challenge in the establishment of nascent polyploids is sustained karyotype instability, which compromises fitness. The three putative diploid progenitors of bread wheat, with AA, SS (S ∼ B), and DD genomes occurred sympatrically, and their cross-fertilization in different combinations may have resulted in fertile allotetraploids with various genomic constitutions. However, only SSAA or closely related genome combinations have led to the speciation of tetraploid wheats like Triticum turgidum and Triticum timopheevii. We analyzed early generations of four newly synthesized allotetraploid wheats with genome compositions SshSshAmAm, SlSlAA, SbSbDD, and AADD by combined fluorescence and genomic in situ hybridization-based karyotyping. Results of karyotype analyses showed that although SshSshAmAm and SlSlAA are characterized by immediate and persistent karyotype stability, massive aneuploidy and extensive chromosome restructuring are associated with SbSbDD and AADD in which parental subgenomes showed markedly different propensities for chromosome gain/loss and rearrangements. Although compensating aneuploidy and reciprocal translocation between homeologs prevailed, reproductive fitness was substantially compromised due to chromosome instability. Strikingly, localized genomic changes in repetitive DNA and copy-number variations in gene homologs occurred in both chromosome stable lines, SshSshAmAm and SlSlAA. Our data demonstrated that immediate and persistent karyotype stability is intrinsic to newly formed allotetraploid wheat with genome combinations analogous to natural tetraploid wheats. This property, coupled with rapid gene copy-number variations, may have laid the foundation of tetraploid wheat establishment.


The Plant Cell | 2014

Evolution of the BBAA Component of Bread Wheat during Its History at the Allohexaploid Level

Huakun Zhang; Bo Zhu; Bao Qi; Xiaowan Gou; Yuzhu Dong; Chunming Xu; Bangjiao Zhang; Wei Huang; Chang Liu; Xutong Wang; Chunwu Yang; Hao Zhou; Khalil Kashkush; Moshe Feldman; Jonathan F. Wendel; Bao Liu

The extracted tetraploid wheat (ETW) containing the BBAA subgenomes of hexaploid bread wheat has a stabilized karyotype but anomalous phenotypes. Genome-wide comparisons between ETW and natural tetraploid wheat revealed a large number of differentially expressed genes in ETW; these changes showed early occurrence and evolutionary persistence during bread wheat evolution. Subgenome integrity in bread wheat (Triticum aestivum; BBAADD) makes possible the extraction of its BBAA component to restitute a novel plant type. The availability of such a ploidy-reversed wheat (extracted tetraploid wheat [ETW]) provides a unique opportunity to address whether and to what extent the BBAA component of bread wheat has been modified in phenotype, karyotype, and gene expression during its evolutionary history at the allohexaploid level. We report here that ETW was anomalous in multiple phenotypic traits but maintained a stable karyotype. Microarray-based transcriptome profiling identified a large number of differentially expressed genes between ETW and natural tetraploid wheat (Triticum turgidum), and the ETW-downregulated genes were enriched for distinct Gene Ontology categories. Quantitative RT-PCR analysis showed that gene expression differences between ETW and a set of diverse durum wheat (T. turgidum subsp durum) cultivars were distinct from those characterizing tetraploid cultivars per se. Pyrosequencing revealed that the expression alterations may occur to either only one or both of the B and A homoeolog transcripts in ETW. A majority of the genes showed additive expression in a resynthesized allohexaploid wheat. Analysis of a synthetic allohexaploid wheat and diverse bread wheat cultivars revealed the rapid occurrence of expression changes to the BBAA subgenomes subsequent to allohexaploidization and their evolutionary persistence.


Journal of Genetics and Genomics | 2010

Generality and characteristics of genetic and epigenetic changes in newly synthesized allotetraploid wheat lines

Bao Qi; Xiaofang Zhong; Bo Zhu; Na Zhao; Liying Xu; Huakun Zhang; Xiaoming Yu; Bao Liu

Previous studies have shown rapid and extensive genomic instability associated with early stages of allopolyploidization in wheat. However, these studies are based on either a few pre-selected genomic loci or genome-wide analysis of a single plant individual for a given cross combination, thus making the extent and generality of the changes uncertain. To further study the generality and characteristics of allopolyploidization-induced genomic instability in wheat, we investigated genetic and epigenetic changes from a genome-wide perspective (by using the AFLP and MSAP markers) in four sets of newly synthesized allotetraploid wheat lines with various genome constitutions, each containing three randomly chosen individual plants at the same generation. We document that although general chromosomal stability was characteristic of all four sets of allotetraploid wheat lines, genetic and epigenetic changes at the molecular level occurred in all these plants, with both kinds of changes classifiable into two distinct categories, i.e., stochastic and directed. The abundant type of genetic change is loss of parental bands while the prevalent cytosine methylation pattern alteration is hypermethylation at the CHG sites. Our results have extended previous studies regarding allopolyploidization-induced genomic dynamics in wheat by demonstrating the generality of both genetic and epigenetic changes associated with multiple nascent allotetraploid wheat lines, and providing novel insights into the characteristics of the two kinds of induced genomic instabilities.


Scientific Reports | 2016

Transcriptome shock invokes disruption of parental expression-conserved genes in tetraploid wheat

Huakun Zhang; Xiaowan Gou; Ai Zhang; Xutong Wang; Na Zhao; Yuzhu Dong; Lin-Feng Li; Bao Liu

Allopolyploidy often triggers phenotypic novelty and gene expression remolding in the resulting polyploids. In this study, we employed multiple phenotypic and genetic approaches to investigate the nature and consequences of allotetraploidization between A- and S-subgenome of tetraploid wheat. Results showed that karyotype of the nascent allopolyploid plants (AT2) is stable but they showed clear novelty in multiple morphological traits which might have positively contributed to the initial establishment of the tetraploids. Further microarray-based transcriptome profiling and gene-specific cDNA-pyrosequencing have documented that transcriptome shock was exceptionally strong in AT2, but a substantial proportion of the induced expression changes was rapidly stabilized in early generations. Meanwhile, both additive and nonadditive expression genes showed extensive homeolog expression remodeling and which have led to the subgenome expression dominance in leaf and young inflorescence of AT2. Through comparing the homeolog-expressing patterns between synthetic and natural tetraploid wheats, it appears that the shock-induced expression changes at both the total expression level and subgenome homeolog partitioning are evolutionarily persistent. Together, our study shed new light on how gene expression changes have rapidly occurred at the initial stage following allotetraploidization, as well as their evolutionary relevance, which may have implications for wheat improvements.


New Phytologist | 2016

Heritable alteration of DNA methylation induced by whole‐chromosome aneuploidy in wheat

Lihong Gao; Moussa Diarso; Ai Zhang; Huakun Zhang; Yuzhu Dong; Lixia Liu; Zhenling Lv; Bao Liu

Aneuploidy causes changes in gene expression and phenotypes in all organisms studied. A previous study in the model plant Arabidopsis thaliana showed that aneuploidy-generated phenotypic changes can be inherited to euploid progenies and implicated an epigenetic underpinning of the heritable variations. Based on an analysis by amplified fragment length polymorphism and methylation-sensitive amplified fragment length polymorphism markers, we found that although genetic changes at the nucleotide sequence level were negligible, extensive changes in cytosine DNA methylation patterns occurred in all studied homeologous group 1 whole-chromosome aneuploid lines of common wheat (Triticum aestivum), with monosomic 1A showing the greatest amount of methylation changes. The changed methylation patterns were inherited by euploid progenies derived from the aneuploid parents. The aneuploidy-induced DNA methylation alterations and their heritability were verified at selected loci by bisulfite sequencing. Our data have provided empirical evidence supporting earlier suggestions that heritability of aneuploidy-generated, but aneuploidy-independent, phenotypic variations may have an epigenetic basis. That at least one type of aneuploidy - monosomic 1A - was able to cause significant epigenetic divergence of the aneuploid plants and their euploid progenies also lends support to recent suggestions that aneuploidy may have played an important and protracted role in polyploid genome evolution.


Plant Molecular Biology | 2015

Genetic and epigenetic modifications to the BBAA component of common wheat during its evolutionary history at the hexaploid level.

Chang Liu; Xuejiao Yang; Huakun Zhang; Xutong Wang; Zhibin Zhang; Yao Bian; Bo Zhu; Yuzhu Dong; Bao Liu

The formation and evolution of common wheat (Triticum aestivum L., genome BBAADD) involves allopolyploidization events at two ploidy levels. Whether the two ploidy levels (tetraploidy and hexaploidy) have impacted the BBAA subgenomes differentially remains largely unknown. We have reported recently that extensive and distinct modifications of transcriptome expression occurred to the BBAA component of common wheat relative to the evolution of gene expression at the tetraploid level in Triticum turgidum. As a step further, here we analyzed the genetic and cytosine DNA methylation differences between an extracted tetraploid wheat (ETW) harboring genome BBAA that is highly similar to the BBAA subgenomes of common wheat, and a set of diverse T. turgidum collections, including both wild and cultivated genotypes. We found that while ETW had no significantly altered karyotype from T. turgidum, it diverged substantially from the later at both the nucleotide sequence level and in DNA methylation based on molecular marker assay of randomly sampled loci across the genome. In particular, ETW is globally less cytosine-methylated than T. turgidum, consistent with earlier observations of a generally higher transcriptome expression level in ETW than in T. turgidum. Together, our results suggest that genome evolution at the allohexaploid level has caused extensive genetic and DNA methylation modifications to the BBAA subgenomes of common wheat, which are distinctive from those accumulated at the tetraploid level in both wild and cultivated T. turgidum genotypes.

Collaboration


Dive into the Huakun Zhang's collaboration.

Top Co-Authors

Avatar

Bao Liu

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar

Bao Liu

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bao Qi

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar

Bo Zhu

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Ai Zhang

Ministry of Education

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ning Li

Ministry of Education

View shared research outputs
Top Co-Authors

Avatar

Yao Bian

Ministry of Education

View shared research outputs
Top Co-Authors

Avatar

Fangpu Han

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge