Huamei Forsman
University of Gothenburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Huamei Forsman.
Arthritis & Rheumatism | 2011
Huamei Forsman; Ulrika Islander; Emil Andréasson; Annica Andersson; Karin Önnheim; Alexandra Karlström; Karin Sävman; Mattias Magnusson; Kelly L. Brown; Anna Karlsson
OBJECTIVE Galectin 3, an endogenous β-galactoside-binding lectin, plays an important role in the modulation of immune responses. The finding that galectin 3 is present in the inflamed synovium in patients with rheumatoid arthritis suggests that the protein is associated with the pathogenesis of this disease. We undertook this study to investigate the influence of galectin 3 deficiency in a murine model of arthritis. METHODS Wild-type (WT) and galectin 3-deficient (galectin 3(-/-) ) mice were subjected to antigen-induced arthritis (AIA) through immunization with methylated bovine serum albumin. The concentration of serum cytokines (interleukin-6 [IL-6] and tumor necrosis factor α [TNFα]) and antigen-specific antibodies was evaluated using a cytometric bead array platform and enzyme-linked immunosorbent assay (ELISA). Cellular IL-17 responses were examined by flow cytometry, ELISA, and enzyme-linked immunospot assay. RESULTS The joint inflammation and bone erosion of AIA were markedly suppressed in galectin 3(-/-) mice as compared with WT mice. The reduced arthritis in galectin 3(-/-) mice was accompanied by decreased levels of antigen-specific IgG and proinflammatory cytokines. The frequency of IL-17-producing cells in the spleen was reduced in galectin 3(-/-) mice as compared with WT mice. Exogenously added recombinant galectin 3 could partially restore the reduced arthritis and cytokines in galectin 3(-/-) mice. CONCLUSION Our findings show that galectin 3 plays a pathogenic role in the development and progression of AIA and that the disease severity is accompanied by alterations of antigen-specific IgG levels, systemic levels of TNFα and IL-6, and frequency of IL-17-producing T cells. To our knowledge, this is the first report of in vivo evidence that galectin 3 plays a crucial role in the development of arthritis.
Infection and Immunity | 2012
Huamei Forsman; Karin Christenson; Johan Bylund; Claes Dahlgren
ABSTRACT The virulence and pathogenesis mechanisms of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) strains depend on a newly described group of phenol-soluble modulin (PSM) peptides (the PSMα peptides) with cytolytic activity. These toxins are α-helical peptides with a formyl group at the N terminus, and they activate neutrophils through formyl peptide receptor 2 (FPR2), a function closely correlated to the capacity of staphylococcal species to cause invasive infections. The effects of two synthetic PSMα peptides were investigated, and we show that they utilize FPR2 and promote neutrophils to produce reactive oxygen species (ROS) which in turn trigger inactivation of the peptides. Independently of FPR2, the PSMα peptides also downregulate the neutrophil response to other stimuli and exert a cytolytic effect to which apoptotic neutrophils are more sensitive than viable cells. The novel immunomodulatory functions of the PSMα peptides were sensitive to ROS generated by the neutrophil myeloperoxidase (MPO)-H2O2 system, suggesting a role for this enzyme system in counteracting bacterial virulence.
PLOS ONE | 2013
Amanda Welin; Firoozeh Amirbeagi; Karin Christenson; Lena Björkman; Halla Björnsdottir; Huamei Forsman; Claes Dahlgren; Anna Karlsson; Johan Bylund
Neutrophil heterogeneity was described decades ago, but it could not be elucidated at the time whether the existence of different neutrophil subsets had any biological relevance. It has been corroborated in recent years that neutrophil subsets, defined by differential expression of various markers, are indeed present in human blood, calling for renewed attention to this question. The expression of the granule protein olfactomedin 4 (OLFM4) has been suggested to define two such neutrophil subsets. We confirm the simultaneous presence of one OLFM4-positive and one OLFM4-negative neutrophil subpopulation as well as the localization of the protein to specific granules. In vitro, these neutrophil subsets displayed equal tendency to undergo apoptosis and phagocytose bacteria. In addition, the subpopulations were recruited equally to inflammatory sites in vivo, and this was true both in an experimental model of acute inflammation and in naturally occurring pathological joint inflammation. In line with its subcellular localization, only limited OLFM4 release was seen upon in vivo transmigration, and release through conventional degranulation required strong secretagogues. However, extracellular release of OLFM4 could be achieved upon formation of neutrophil extracellular traps (NETs) where it was detected only in a subset of the NETs. Although we were unable to demonstrate any functional differences between the OLFM4-defined subsets, our data show that different neutrophil subsets are present in inflamed tissue in vivo. Furthermore, we demonstrate NETs characterized by different markers for the first time, and our results open up for functions of OLFM4 itself in the extracellular space through exposure in NETs.
Antimicrobial Agents and Chemotherapy | 2009
Åse Björstad; Galia Askarieh; Kelly L. Brown; Karin Christenson; Huamei Forsman; Karin Önnheim; Hsin-Ni Li; Susann Teneberg; Olaf Maier; Dick Hoekstra; Claes Dahlgren; Donald J. Davidson; Johan Bylund
ABSTRACT LL-37 is a cationic host defense peptide that is highly expressed during acute inflammation and that kills bacteria by poorly defined mechanisms, resulting in permeabilization of microbial membranes. High concentrations of LL-37 have also been reported to have cytotoxic effects against eukaryotic cells, but the peptide is clearly capable of differentiating between membranes with different compositions (eukaryotic versus bacterial membranes). Eukaryotic cells such as leukocytes change their membrane composition during apoptotic cell death, when they are turned into nonfunctional but structurally intact entities. We tested whether LL-37 exerted specific activity on apoptotic cells and found that the peptide selectively permeabilized the membranes of apoptotic human leukocytes, leaving viable cells unaffected. This activity was seemingly analogous to the direct microbicidal effect of LL-37, in that it was rapid, independent of known surface receptors and/or active cell signaling, and inhibitable by serum components such as high-density lipoprotein. A similar selective permeabilization of apoptotic cells was recorded for both NK cells and neutrophils. In the latter cell type, LL-37 permeabilized both the plasma and granule membranes, resulting in the release of both lactate dehydrogenase and myeloperoxidase. Apoptosis is a way for inflammatory cells to die silently and minimize collateral tissue damage by retaining tissue-damaging and proinflammatory substances within intact membranes. Permeabilization of apoptotic leukocytes by LL-37, accompanied by the leakage of cytoplasmic as well as intragranular molecules, may thus shift the balance between pro- and anti-inflammatory signals and in this way be of importance for the termination of acute inflammation.
Immunology | 2008
Karin Önnheim; Johan Bylund; François Boulay; Claes Dahlgren; Huamei Forsman
Neutrophil granulocytes play an important role in innate host defence against microbial invasions and they are also the key effector cells in mediating host tissue damage. These functions often rely on the production of reactive oxygen species (ROS) from the membrane‐bound NADPH‐oxidase system. The magnitude of ROS production varies depending on the state of the cells, i.e. resting or primed. Many priming agents as well as potent NADPH‐oxidase activators have been identified and characterized for human neutrophils. The cytokine tumour necrosis factor (TNF)‐α is one prominent example of a priming agent and the synthetic hexapeptide WKYMVm is an agonist that triggers an activation of the NADPH‐oxidase of human neutrophils through two members of the formyl peptide family of receptors, formyl peptide receptor (FPR) and FPR‐like 1 (FPRL1). This peptide also activates murine neutrophils but the precise receptor involved has not been previously characterized. We show in this study that WKYMVm activates stably transfected HL60 cells expressing murine formyl peptide receptor‐related sequence 2 (Fpr‐rs2) and that activation of murine neutrophils with WKYMVm is blocked by an FPRL1‐specific antagonist. WKYMVm is thus an agonist for Fpr‐rs2 and we suggest that this receptor is in fact the mouse orthologue of FPRL1. In addition, we show that the WKYMVm response in murine neutrophils can be primed by TNF‐α and this priming process involves mobilization of subcellular granules. The results obtained using neutrophils derived from TNF receptor type I (TNFRI)‐deficient animals suggest that TNF‐α exerts its priming effect via the TNFRI.
Biochemical Pharmacology | 2016
Claes Dahlgren; Michael Gabl; André Holdfeldt; Malene Winther; Huamei Forsman
Proper recruitment and activation of neutrophils to/at sites of infection/inflammation relies largely on the surface expression of chemoattractant receptors of which a formyl peptide receptor (FPR1) was the first to be cloned and characterized in more detail. This receptor displays high affinity for bacterial- or mitochondrial-derived peptides that contain a formylated methionine in the N-terminus. The neutrophil chemoattractant receptors belong to the group of 7-transmembrane domain receptors that signal through activation of heterotrimeric G proteins. These receptors have been shown to be important in host defense against microbial intruders and in regulating inflammatory reactions. The two FPRs (FPR1, FPR2) expressed in neutrophils share significant sequence homology and bind many structurally diverse activating (agonistic) and inhibiting (antagonistic) ligands, ranging from peptides to lipopeptides containing peptide sequences derived from intracellular regions of the FPRs. Recent structural and functional studies of the two neutrophil FPRs have generated important information for our understanding of general pharmacological principles, governing regulation of neutrophil function and inflammation and increased knowledge of more general G-protein coupled receptor features, such as ligand recognition, biased signaling, allosteric modulation, and a unique receptor cross-talk phenomenon. This article aims to summarize recent discoveries and pharmacological characterization of neutrophil FPRs and to discuss unmet challenges, including recognition by the receptors of diverse ligands and how biased signals mediate different biological effects.
Biochimica et Biophysica Acta | 2013
Huamei Forsman; Johan Bylund; Tudor I. Oprea; Anna Karlsson; François Boulay; Marie-Josèphe Rabiet; Claes Dahlgren
Lipidated peptides (pepducins) can activate certain G-protein coupled receptors (GPCRs) through a unique allosteric modulation mechanism involving cytosolic receptor domains. Pepducins with the amino acid sequence of the third intracellular loop of the neutrophil formyl peptide receptors (FPRs) as a common denominator were N-terminally conjugated with palmitic acid. F2Pal16, containing the 16 amino acids present in the third intracellular loop of FPR2, induced superoxide production in human neutrophils and the activity was sensitive to FPR2 antagonists. Cells over-expressing FPR2 were similarly responsive and responded with a transient increase in cytosolic calcium. No such effects were observed with the corresponding FPR1 pepducin. The peptide alone, lacking palmitic acid, did not activate neutrophils. A ten amino acid long pepducin F2Pal10, that was a more potent neutrophil activator than F2Pal16, was used for amino acid substitution studies. The sequences of FPR1 and FPR2 in the third intracellular loop differ by only two amino acids, and a pepducin with the FPR2-specific K231 replaced by the FPR1-specific Q231 lost all activity. The active F2Pal10 pepducin also triggered a response in cells expressing a mutated FPR2 with the third intracellular loop identical to that of FPR1. The data presented suggest that the same signaling pathways are activated when the signaling cascade is initiated by a classical receptor agonist (outside-in signaling) and when signaling starts on the cytosolic side of the membrane by a pepducin (inside-in signaling). A fundamental difference is also disclosed between the two neutrophil FPRs regarding their sensitivities to third intracellular loop pepducins.
Journal of Immunology | 2012
Huamei Forsman; Emil Andréasson; Jennie Karlsson; François Boulay; Marie-Josèphe Rabiet; Claes Dahlgren
The neutrophil formyl peptide receptors, FPR1 and FPR2, play critical roles for inflammatory reactions, and receptor-specific antagonists/inhibitors can possibly be used to facilitate the resolution of pathological inflammatory reactions. A 10-aa-long rhodamine-linked and membrane-permeable peptide inhibitor (PBP10) has such a potential. This FPR2 selective inhibitor adopts a phosphatidylinositol 4,5-bisphosphate–binding sequence in the cytoskeletal protein gelsolin. A core peptide, RhB-QRLFQV, is identified that displays inhibitory effects as potent as the full-length molecule. The phosphatidylinositol 4,5-bisphosphate–binding capacity of PBP10 was not in its own sufficient for inhibition. A receptor in which the presumed cytoplasmic signaling C-terminal tail of FPR2 was replaced with that of FPR1 retained the PBP10 sensitivity, suggesting that the tail of FPR2 was not on its own critical for inhibition. This gains support from the fact that the effect of cell-penetrating lipopeptide (a pepducin), suggested to act primarily through the third intracellular loop of FPR2, was significantly inhibited by PBP10. The third intracellular loops of FPR1 and FPR2 differ in only two amino acids, but an FPR2 mutant in which these two amino acids were replaced by those present in FPR1 retained the PBP10 sensitivity. In summary, we conclude that the inhibitory activity on neutrophil function of PBP10 is preserved in the core sequence RhB-QRLFQV and that neither the third intracellular loop of FPR2 nor the cytoplasmic tail of the receptor alone is responsible for the specific inhibition.
Scandinavian Journal of Immunology | 2011
Huamei Forsman; K. Önnheim; E. Andreasson; Claes Dahlgren
In this study, we determined receptor preferences for compound 43, a nitrosylated pyrazolone derivative, and the eicosanoid lipoxin A4 (LXA4), potent anti‐inflammatory mediators in many experimental in vivo models. Their effects have been suggested to be mediated through binding to formyl peptide receptor (FPR)2 [earlier known as formyl peptide receptor‐like 1 or the lipoxin A4 receptor (ALXR)], one of the two members of the FPR family expressed in neutrophils. Compound 43 activates all neutrophil functions investigated, whereas LXA4 induces a unique inhibiting pathway suggested to involve β‐arrestin binding as an early signalling step, but not a transient rise in intracellular Ca2+. We show that compound 43 can activate not only FPR2 but also FPR1, the other neutrophil receptor in the FPR family, and FPR1 is actually the preferred receptor in human neutrophils and possibly also in the murine equivalent. LXA4 analogues from two commercial sources were used, and neither of these induced any translocation of β‐arrestin as measured in an enzyme fragment complementation assay. The conclusions drawn from these experiments are that neither compound 43 nor LXA4 works as FPR2 agonists in neutrophils, findings of importance for a proper interpretation of results obtained with these compounds as regulators of inflammation.
Biochemical Pharmacology | 2011
Huamei Forsman; Christina Kalderén; Anna Nordin; Erik Nordling; Annika Jernmalm Jensen; Claes Dahlgren
The neutrophil formyl peptide receptors (FPR1 and FPR2) are G-protein coupled receptors that can induce pro-inflammatory as well as anti-inflammatory activities when activated. Accordingly, these receptors may become therapeutic targets for the development of novel drugs to be used for reducing the inflammation induced injuries in asthma, rheumatoid arthritis, Alzheimers disease, cardiovascular diseases and traumatic shock. We screened a library of more then 50K small compounds for an ability of the compounds to induce a transient rise in intracellular Ca(2+) in cells transfected to express FPR2 (earlier called FPRL1 or the lipoxin A(4) receptor). Ten agonist hits were selected for further analysis representing different chemical series and five new together with five earlier described molecules were further profiled. Compounds 1-10 gave rise to a calcium response in the FPR2 transfectants with EC(50) values ranging from 4×10(-9)M to 2×10(-7)M. All 10 compounds activated human neutrophils to release superoxide, and based on the potency of their activity, the three most potent activators of the neutrophil NADPH-oxidase were further characterized. These three agonists were largely resistant to inactivation by neutrophil produced reactive oxygen species and shown to trigger the same functional repertoire in neutrophils as earlier described peptide agonists. Accordingly they induced chemotaxis, granule mobilization and secretion of superoxide. Interestingly, the oxidase activity was largely inhibited by cyclosporine H, an FPR1 selective antagonist, but not by PBP10, an FPR2 selective inhibitor, suggesting that FPR1 is the preferred receptor in neutrophils for all three agonists.