Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huan Cai is active.

Publication


Featured researches published by Huan Cai.


Nature Medicine | 2012

Neuroprotective role of Sirt1 in mammalian models of Huntington's disease through activation of multiple Sirt1 targets

Mali Jiang; Jiawei Wang; Jinrong Fu; Lin Du; Hyunkyung Jeong; Tim West; Lan Xiang; Qi Peng; Zhipeng Hou; Huan Cai; Tamara Seredenina; Nicolas Arbez; Shanshan Zhu; Katherine Sommers; Jennifer Qian; Jiangyang Zhang; Susumu Mori; X. William Yang; Kellie L.K. Tamashiro; Susan Aja; Timothy H. Moran; Ruth Luthi-Carter; Bronwen Martin; Stuart Maudsley; Mark P. Mattson; Robert H. Cichewicz; Christopher A. Ross; David M. Holtzman; Dimitri Krainc; Wenzhen Duan

Huntingtons disease is a fatal neurodegenerative disorder caused by an expanded polyglutamine repeat in huntingtin (HTT) protein. We previously showed that calorie restriction ameliorated Huntingtons disease pathogenesis and slowed disease progression in mice that model Huntingtons disease (Huntingtons disease mice). We now report that overexpression of sirtuin 1 (Sirt1), a mediator of the beneficial metabolic effects of calorie restriction, protects neurons against mutant HTT toxicity, whereas reduction of Sirt1 exacerbates mutant HTT toxicity. Overexpression of Sirt1 improves motor function, reduces brain atrophy and attenuates mutant-HTT–mediated metabolic abnormalities in Huntingtons disease mice. Further mechanistic studies suggested that Sirt1 prevents the mutant-HTT–induced decline in brain-derived neurotrophic factor (BDNF) concentrations and the signaling of its receptor, TrkB, and restores dopamine- and cAMP-regulated phosphoprotein, 32 kDa (DARPP32) concentrations in the striatum. Sirt1 deacetylase activity is required for Sirt1-mediated neuroprotection in Huntingtons disease cell models. Notably, we show that mutant HTT interacts with Sirt1 and inhibits Sirt1 deacetylase activity, which results in hyperacetylation of Sirt1 substrates such as forkhead box O3A (Foxo3a), thereby inhibiting its pro-survival function. Overexpression of Sirt1 counteracts the mutant-HTT–induced deacetylase deficit, enhances the deacetylation of Foxo3a and facilitates cell survival. These findings show a neuroprotective role for Sirt1 in mammalian Huntingtons disease models and open new avenues for the development of neuroprotective strategies in Huntingtons disease.


Cell Metabolism | 2016

Effects of Sex, Strain, and Energy Intake on Hallmarks of Aging in Mice

Sarah J. Mitchell; Morten Scheibye-Knudsen; Evandro Fei Fang; Miguel A. Aon; José A. González-Reyes; Sonia Cortassa; Susmita Kaushik; Marta Gonzalez-Freire; Bindi Patel; Devin Wahl; Ahmed Ali; Miguel Calvo-Rubio; María I. Burón; Vincent Guiterrez; Theresa M. Ward; Hector H. Palacios; Huan Cai; David W. Frederick; Christopher Hine; Filomena Broeskamp; Lukas Habering; John A Dawson; T. Mark Beasley; Junxiang Wan; Yuji Ikeno; Gene Hubbard; Kevin G. Becker; Yongqing Zhang; Vilhelm A. Bohr; Dan L. Longo

Calorie restriction (CR) is the most robust non-genetic intervention to delay aging. However, there are a number of emerging experimental variables that alter CR responses. We investigated the role of sex, strain, and level of CR on health and survival in mice. CR did not always correlate with lifespan extension, although it consistently improved health across strains and sexes. Transcriptional and metabolomics changes driven by CR in liver indicated anaplerotic filling of the Krebs cycle together with fatty acid fueling of mitochondria. CR prevented age-associated decline in the liver proteostasis network while increasing mitochondrial number, preserving mitochondrial ultrastructure and function with age. Abrogation of mitochondrial function negated life-prolonging effects of CR in yeast and worms. Our data illustrate the complexity of CR in the context of aging, with a clear separation of outcomes related to health and survival, highlighting complexities of translation of CR into human interventions.


PLOS ONE | 2013

VennPlex–A Novel Venn Diagram Program for Comparing and Visualizing Datasets with Differentially Regulated Datapoints

Huan Cai; Hongyu Chen; Tie Yi; Caitlin M. Daimon; John P. Boyle; Chris Peers; Stuart Maudsley; Bronwen Martin

With the development of increasingly large and complex genomic and proteomic data sets, an enhancement in the complexity of available Venn diagram analytical programs is becoming increasingly important. Current freely available Venn diagram programs often fail to represent extra complexity among datasets, such as regulation pattern differences between different groups. Here we describe the development of VennPlex, a program that illustrates the often diverse numerical interactions among multiple, high-complexity datasets, using up to four data sets. VennPlex includes versatile output features, where grouped data points in specific regions can be easily exported into a spreadsheet. This program is able to facilitate the analysis of two to four gene sets and their corresponding expression values in a user-friendly manner. To demonstrate its unique experimental utility we applied VennPlex to a complex paradigm, i.e. a comparison of the effect of multiple oxygen tension environments (1–20% ambient oxygen) upon gene transcription of primary rat astrocytes. VennPlex accurately dissects complex data sets reliably into easily identifiable groups for straightforward analysis and data output. This program, which is an improvement over currently available Venn diagram programs, is able to rapidly extract important datasets that represent the variety of expression patterns available within the data sets, showing potential applications in fields like genomics, proteomics, and bioinformatics.


Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2012

Age-Related Changes in Mouse Taste Bud Morphology, Hormone Expression, and Taste Responsivity

Yu-Kyong Shin; Wei-na Cong; Huan Cai; Wook Kim; Stuart Maudsley; Josephine M. Egan; Bronwen Martin

Normal aging is a complex process that affects every organ system in the body, including the taste system. Thus, we investigated the effects of the normal aging process on taste bud morphology, function, and taste responsivity in male mice at 2, 10, and 18 months of age. The 18-month-old animals demonstrated a significant reduction in taste bud size and number of taste cells per bud compared with the 2- and 10-month-old animals. The 18-month-old animals exhibited a significant reduction of protein gene product 9.5 and sonic hedgehog immunoreactivity (taste cell markers). The number of taste cells expressing the sweet taste receptor subunit, T1R3, and the sweet taste modulating hormone, glucagon-like peptide-1, were reduced in the 18-month-old mice. Concordant with taste cell alterations, the 18-month-old animals demonstrated reduced sweet taste responsivity compared with the younger animals and the other major taste modalities (salty, sour, and bitter) remained intact.


Frontiers in Physiology | 2014

Metabolic and hormonal signatures in pre-manifest and manifest Huntington's disease patients

Rui Wang; Christopher A. Ross; Huan Cai; Wei-na Cong; Caitlin M. Daimon; Olga D. Carlson; Josephine M. Egan; Sana Siddiqui; Stuart Maudsley; Bronwen Martin

Huntingtons disease (HD) is an inherited neurodegenerative disorder typified by involuntary body movements, and psychiatric and cognitive abnormalities. Many HD patients also exhibit metabolic changes including progressive weight loss and appetite dysfunction. Here we have investigated metabolic function in pre-manifest and manifest HD subjects to establish an HD subject metabolic hormonal plasma signature. Individuals at risk for HD who have had predictive genetic testing showing the cytosine-adenine-guanine (CAG) expansion causative of HD, but who do not yet present signs and symptoms sufficient for the diagnosis of manifest HD are said to be “pre-manifest.” Pre-manifest and manifest HD patients, as well as both familial and non-familial controls, were evaluated for multiple peripheral metabolism signals including circulating levels of hormones, growth factors, lipids, and cytokines. Both pre-manifest and manifest HD subjects exhibited significantly reduced levels of circulating growth factors, including growth hormone and prolactin. HD-related changes in the levels of metabolic hormones such as ghrelin, glucagon, and amylin were also observed. Total cholesterol, HDL-C, and LDL-C were significantly decreased in HD subjects. C-reactive protein was significantly elevated in pre-manifest HD subjects. The observation of metabolic alterations, even in subjects considered to be in the pre-manifest stage of HD, suggests that in addition, and prior, to overt neuronal damage, HD affects metabolic hormone secretion and energy regulation, which may shed light on pathogenesis, and provide opportunities for biomarker development.


PLOS ONE | 2013

Altered lipid and salt taste responsivity in ghrelin and GOAT null mice.

Huan Cai; Wei-na Cong; Caitlin M. Daimon; Rui Wang; Matthias H. Tschöp; Jean Sévigny; Bronwen Martin; Stuart Maudsley

Taste perception plays an important role in regulating food preference, eating behavior and energy homeostasis. Taste perception is modulated by a variety of factors, including gastric hormones such as ghrelin. Ghrelin can regulate growth hormone release, food intake, adiposity, and energy metabolism. Octanoylation of ghrelin by ghrelin O-acyltransferase (GOAT) is a specific post-translational modification which is essential for many biological activities of ghrelin. Ghrelin and GOAT are both widely expressed in many organs including the gustatory system. In the current study, overall metabolic profiles were assessed in wild-type (WT), ghrelin knockout (ghrelin−/−), and GOAT knockout (GOAT−/−) mice. Ghrelin−/− mice exhibited decreased food intake, increased plasma triglycerides and increased ketone bodies compared to WT mice while demonstrating WT-like body weight, fat composition and glucose control. In contrast GOAT−/− mice exhibited reduced body weight, adiposity, resting glucose and insulin levels compared to WT mice. Brief access taste behavioral tests were performed to determine taste responsivity in WT, ghrelin−/− and GOAT−/− mice. Ghrelin and GOAT null mice possessed reduced lipid taste responsivity. Furthermore, we found that salty taste responsivity was attenuated in ghrelin−/− mice, yet potentiated in GOAT−/− mice compared to WT mice. Expression of the potential lipid taste regulators Cd36 and Gpr120 were reduced in the taste buds of ghrelin and GOAT null mice, while the salt-sensitive ENaC subunit was increased in GOAT−/− mice compared with WT mice. The altered expression of Cd36, Gpr120 and ENaC may be responsible for the altered lipid and salt taste perception in ghrelin−/− and GOAT−/− mice. The data presented in the current study potentially implicates ghrelin signaling activity in the modulation of both lipid and salt taste modalities.


PLOS ONE | 2013

Long-Term Artificial Sweetener Acesulfame Potassium Treatment Alters Neurometabolic Functions in C57BL/6J Mice

Wei-na Cong; Rui Wang; Huan Cai; Caitlin M. Daimon; Morten Scheibye-Knudsen; Vilhelm A. Bohr; Rebecca Turkin; William H. Wood; Kevin G. Becker; Ruin Moaddel; Stuart Maudsley; Bronwen Martin

With the prevalence of obesity, artificial, non-nutritive sweeteners have been widely used as dietary supplements that provide sweet taste without excessive caloric load. In order to better understand the overall actions of artificial sweeteners, especially when they are chronically used, we investigated the peripheral and central nervous system effects of protracted exposure to a widely used artificial sweetener, acesulfame K (ACK). We found that extended ACK exposure (40 weeks) in normal C57BL/6J mice demonstrated a moderate and limited influence on metabolic homeostasis, including altering fasting insulin and leptin levels, pancreatic islet size and lipid levels, without affecting insulin sensitivity and bodyweight. Interestingly, impaired cognitive memory functions (evaluated by Morris Water Maze and Novel Objective Preference tests) were found in ACK-treated C57BL/6J mice, while no differences in motor function and anxiety levels were detected. The generation of an ACK-induced neurological phenotype was associated with metabolic dysregulation (glycolysis inhibition and functional ATP depletion) and neurosynaptic abnormalities (dysregulation of TrkB-mediated BDNF and Akt/Erk-mediated cell growth/survival pathway) in hippocampal neurons. Our data suggest that chronic use of ACK could affect cognitive functions, potentially via altering neuro-metabolic functions in male C57BL/6J mice.


PLOS ONE | 2012

Altered hypothalamic protein expression in a rat model of Huntington's disease.

Wei-na Cong; Huan Cai; Rui Wang; Caitlin M. Daimon; Stuart Maudsley; Kerstin Raber; Fabio Canneva; Stephan von Hörsten; Bronwen Martin

Huntingtons disease (HD) is a neurodegenerative disorder, which is characterized by progressive motor impairment and cognitive alterations. Changes in energy metabolism, neuroendocrine function, body weight, euglycemia, appetite function, and circadian rhythm can also occur. It is likely that the locus of these alterations is the hypothalamus. We used the HD transgenic (tg) rat model bearing 51 CAG repeats, which exhibits similar HD symptomology as HD patients to investigate hypothalamic function. We conducted detailed hypothalamic proteome analyses and also measured circulating levels of various metabolic hormones and lipids in pre-symptomatic and symptomatic animals. Our results demonstrate that there are significant alterations in HD rat hypothalamic protein expression such as glial fibrillary acidic protein (GFAP), heat shock protein-70, the oxidative damage protein glutathione peroxidase (Gpx4), glycogen synthase1 (Gys1) and the lipid synthesis enzyme acylglycerol-3-phosphate O-acyltransferase 1 (Agpat1). In addition, there are significant alterations in various circulating metabolic hormones and lipids in pre-symptomatic animals including, insulin, leptin, triglycerides and HDL, before any motor or cognitive alterations are apparent. These early metabolic and lipid alterations are likely prodromal signs of hypothalamic dysfunction. Gaining a greater understanding of the hypothalamic and metabolic alterations that occur in HD, could lead to the development of novel therapeutics for early interventional treatment of HD.


Cns & Neurological Disorders-drug Targets | 2010

Therapeutic potential of vasoactive intestinal peptide and its receptors in neurological disorders

Caitlin M. White; Sunggoan Ji; Huan Cai; Stuart Maudsley; Bronwen Martin

Vasoactive intestinal peptide (VIP) is a basic 28 amino acid peptide that binds to a member of the class II family of G protein-coupled receptors (GPCRs). It is widely expressed throughout the body and plays an important role in numerous biological functions. VIP acts via three different GPCRs: VPAC1, VPAC2, and PAC1, which have been identified in various tissues, including brain, lung, kidney, gastrointestinal tract, tongue, and also on immunocompetent cells such as macrophages and lymphocytes. There is mounting evidence that VIP expression and signaling is altered in numerous neurological disorders, and it is becoming apparent that VIP and its receptors could be therapeutic loci for the treatment of several pathological conditions of the central nervous system. In this review, we describe the pathology of several major neurological disorders and discuss the potential pharmacotherapeutic role of VIP and its receptors for the treatment of disorders such as Alzheimers disease, Parkinsons disease, and Autism Spectrum Disorders.


Journal of Biological Chemistry | 2015

Amitriptyline Improves Motor Function via Enhanced Neurotrophin Signaling and Mitochondrial Functions in the Murine N171-82Q Huntington Disease Model

Wei-na Cong; Wayne Chadwick; Rui Wang; Caitlin M. Daimon; Huan Cai; Jennifer Amma; William H. Wood; Kevin G. Becker; Bronwen Martin; Stuart Maudsley

Background: Etiology of Huntington disease (HD) is related to the overproduction of mutant huntingtin (mHTT) protein. Results: Amitriptyline improved motor symptoms via decreasing mHTT protein expression, improving neurotrophin signaling, and enhancing mitochondrial functions in HD mice. Conclusion: Amitriptyline demonstrated beneficial effects in HD mice. Significance: Amitriptyline has therapeutic potential in treating HD. Huntington disease (HD) is a neurodegenerative disorder characterized by progressive motor impairment and cognitive alterations. Hereditary HD is primarily caused by the expansion of a CAG trinucleotide repeat in the huntingtin (Htt) gene, which results in the production of mutant huntingtin protein (mHTT) with an expanded amino-terminal polyglutamine (poly(Q)) stretch. Besides pathological mHTT aggregation, reduced brain-derived neurotrophic factor (BDNF) levels, impaired neurotrophin signaling, and compromised mitochondrial functions also contribute to the deleterious progressive etiology of HD. As a well tolerated Food and Drug Administration-approved antidepressant, amitriptyline (AMI) has shown efficacy in treating neurodegenerative murine models via potentiation of BDNF levels and amelioration of alterations in neurotrophin signaling pathways. In this study, we observed profound improvements in the motor coordination of AMI-treated N171-82Q HD model mice. The beneficial effects of AMI treatment were associated with its ability to reduce mHTT aggregation, potentiation of the BDNF-TrkB signaling system, and support of mitochondrial integrity and functionality. Our study not only provides preclinical evidence for the therapeutic potency of AMI in treating HD, but it also represents an important example of the usefulness of additional pharmacogenomic profiling of pre-existing drugs for novel therapeutic effects with often intractable pathological scenarios.

Collaboration


Dive into the Huan Cai's collaboration.

Top Co-Authors

Avatar

Bronwen Martin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caitlin M. Daimon

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Wei-na Cong

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Rui Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sana Siddiqui

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Josephine M. Egan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kevin G. Becker

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Arya Biragyn

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Christopher A. Ross

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge