Huan-Ge Zhao
Ministry of Education
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Huan-Ge Zhao.
European Journal of Cancer | 2012
Feng-Ying Huang; Wen-Li Mei; Yue-Nan Li; Guang-Hong Tan; Hao-Fu Dai; Jun-Li Guo; Hua Wang; Yong-hao Huang; Huan-Ge Zhao; Song-lin Zhou; Ling Li; Ying-Ying Lin
Cytochalasin D targets actin and is ubiquitous in eukaryotic cells. When cytochalasin D is used as a cytotoxic agent in cancer therapy, it causes significant side effects. To prevent this, cytochalasin D can be encapsulated in polyethylene liposomes. In this study, high-performance liquid chromatography observation of the biodistribution of pegylated liposomal cytochalasin D in tumour-bearing mice showed that liposomal cytochalasin D could be conveniently dissolved in water for i.v. injection and that it specifically accumulated in tumour tissues, more than natural cytochalasin D did. The half-time of liposomal cytochalasin D in the plasma was also significantly longer than that of natural cytochalasin D (4h versus 10 min). MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that liposomal cytochalasin D treatment could cause significant inhibition of cell proliferation in vitro in a manner similar to that of natural cytochalasin D. The antitumour activities of liposomal cytochalasin D were investigated in B16 melanoma, CT26 colorectal carcinoma and H22 hepatoma models, and the results indicated that liposomal cytochalasin D could significantly inhibit tumour growth and prolong survival in a manner similar to that of cisplatin. TUNEL-based apoptosis assays showed that liposomal cytochalasin D induced significant tumour cell apoptosis. Significant inhibition of tumour angiogenesis was observed in mice treated with liposomal cytochalasin D. In addition, no significant side effects were observed in mice treated with liposomal cytochalasin D. Our results show that liposomal cytochalasin D increases solubility and bioavailability, a lower incidence of side effects and improves antitumour effects, indicating its potential as a chemical agent for cancer therapy.
PLOS ONE | 2012
Feng-Ying Huang; Wen-Li Mei; Yue-Nan Li; Guang-Hong Tan; Hao-Fu Dai; Jun-Li Guo; Hua Wang; Yong-hao Huang; Huan-Ge Zhao; Song-lin Zhou; Ying-Ying Lin
Toxicarioside A is a cardenolide isolated mainly from plants and animals. Emerging evidence demonstrate that cardenolides not only have cardiac effects but also anticancer effects. In this study, we used in vivo models to investigate the antitumor activities of toxicarioside A and the potential mechanisms behind them. Murine colorectal carcinoma (CT26) and Lewis lung carcinoma (LL/2) models were established in syngeneic BALB/c and C57BL/6 mice, respectively. We found that the optimum effective dose of toxicarioside A treatment significantly suppressed tumor growth and angiogenesis in CT and LL/2 tumor models in vivo. Northern and Western blot analysis showed significant inhibition of endoglin expression in toxicarioside A-treated human umbilical vein endothelial cells (HUVECs) in vitro and tumor tissues in vivo. Toxicarioside A treatment significantly inhibited cell proliferation, migration and invasion, but did not cause significant cell apoptosis and affected other membrane protein (such as CD31 and MHC I) expression. In addition, TGF-β expression was also significantly inhibited in CT26 and LL/2 tumor cells treated with toxicarioside A. Western blot analysis indicated that Smad1 and phosphorylated Smad1 but not Smad2/3 and phosphorylated Smad2/3 were attenuated in HUVECs treated with toxicarioside A. Smad1 and Smad2/3 signaling remained unchanged in CT26 and LL/2 tumor cells treated with toxicarioside A. Endoglin knockout by small interfering RNA against endoglin induced alternations in Smad1 and Smad2/3 signaling in HUVECs. Our results indicate that toxicarioside A suppresses tumor growth through inhibition of endoglin-related tumor angiogenesis, which involves in the endoglin/TGF-β signal pathway.
Immunology | 2014
Feng-Ying Huang; Cai-Chun Wang; Yong-hao Huang; Huan-Ge Zhao; Jun-Li Guo; Song-lin Zhou; Hua Wang; Ying-Ying Lin; Guang-Hong Tan
The IgE Fcε3 domain is an active immunotherapeutic target for asthma and other allergic diseases. However, previous methods for preparing IgE fusion protein vaccines are complex. Antigen 43 (Ag43) is a surface protein found in Escherichia coli that contains α and β subunits (the α subunit contains multiple T epitopes). Here we constructed a novel Ag43 surface display system (Ag43 system) to express Ag43 chimeric proteins to disrupt immune tolerance against IgE. The Ag43 system was constructed from the E. coli strain Tan109, in which the Ag43 gene was deleted and a recombinant plasmid (pETAg43) expressing a partial Ag43 gene was introduced. The Fcε3 domain of the IgE gene was then subcloned into plasmid pETAg43, resulting in a recombinant plasmid pETAg43/Fcε3, which was used to transform Tan109 for Ag43/Fcε3 surface expression. Thereafter, Ag43/Fcε3 was investigated as an asthma vaccine in a mouse model. Ag43/Fcε3 was expressed on and could be separated from the bacterial surface by heating to 60° while retaining activity. Ag43/Fcε3, as a protein vaccine, produced neutralizing autoantibodies to murine IgE, induced significant anti‐asthma effects, and regulated IgE and T helper cytokines in a murine asthma model. Data show that Ag43/Fcε3 chimeric protein is a potential model vaccine for asthma treatment, and that the Ag43 system may be an effective tool for novel vaccine preparation to break immune tolerance to other self‐molecules.
Oncology Reports | 2013
Feng-Ying Huang; Wen-Li Mei; Guang-Hong Tan; Hao-Fu Dai; Yue-Nan Li; Jun-Li Guo; Yong-hao Huang; Huan-Ge Zhao; Hua Wang; Song-lin Zhou; Ying-Ying Lin
Cytochalasin D (CytD) targets actin, a ubiquitous protein in eukaryotic cells. Previous studies have focused mainly on the antitumor effects of CytD. We previously found CytD to promote lung metastasis in B16 melanoma cells, which we had not anticipated, and, therefore, in the present study we investigated the possible underlying mechanisms. B16 melanoma cells were co-cultured with CytD and other agents and used to establish a lung metastatic model. In this B16 melanoma metastatic model, significantly increased lung metastasis and lung weight were found in CytD-treated mice, which was almost completely suppressed by tissue factor (TF) RNA interference expressed via lentivirus. The results of northern and western blot, and real-time RT-PCR analysis showed that the expression of TF was significantly upregulated in B16 cells treated with CytD but was significantly inhibited by TF RNA interference. In addition, upregulation and phosphorylation of mitogen-activated protein kinase p38 were also found in the metastatic lung tissues treated with CytD and in the B16 cells co-cultured with CytD and factor VIIa (FVIIa), but not in cells cultured with CytD, dimethyl sulfoxide or FVIIa alone. These results indicate that CytD stimulates the expression of TF in B16 melanoma cells, activating both coagulation-dependent and -independent pathways via binding to FVIIa, eventually promoting lung metastasis. TF interference is a potential approach to the prevention of B16 melanoma metastasis.
SpringerPlus | 2016
Songlin Zhou; Min Wang; Qi Feng; Yingying Lin; Huan-Ge Zhao
In recent years, marine fungi have become an important source of active marine natural products. Former researches are limited in habitats selection of fungi with bioactive compounds. In this paper were to measure antibacterial and antitumor cell activity for secondary metabolites of marine fungi, which were isolated from different habitats in coastal regions. 195 strains of marine fungi were isolated and purified from three different habitats. They biologically active experiment results showed that fungi isolation from the mangrove habitats had stronger antibacterial activity than others, and the stains isolated from the estuarial habitats had the least antibacterial activity. However, the strains separated from beach habitats strongly inhibited tumor cell proliferation in vitro, and fungi of mangrove forest habitats had the weakest activity of inhibiting tumor. Meanwhile, 195 fungal strains belonged to 46 families, 84 genera, 142 species and also showed 137 different types of activity combinations by analyzing the inhibitory activity of the metabolites fungi for 4 strains of pathogenic bacteria and B-16 cells. The study investigated the biological activity of marine fungi isolated from different habitats in Haikou coastal regions. The results help us to understand bioactive metabolites of marine fungi from different habitats, and how to selected biological activity fungi from various marine habitats effectively.
International Journal of Cancer | 2014
Feng-Ying Huang; Ling Li; Quan Liu; Yue-Nan Li; Rui-Zhen Bai; Yong-hao Huang; Huan-Ge Zhao; Jun-Li Guo; Song-lin Zhou; Hua Wang; Ying-Ying Lin; Guang-Hong Tan
Various angiogenesis‐related self‐molecules have been considered to be therapeutic targets. However, the direct use of self‐molecules as vaccines is not recommended because of the inherent ability of the host to develop immune tolerance. Antigen 43 (Ag43) is a surface protein found in E. coli and contains an α and a β subunits, which contains multiple T epitopes in α subunit. Here we construct a novel Ag43 surface display system (Ag43 system) to express Ag43 chimeric proteins to disrupt immune tolerance against self‐molecules. The Ag43 system was constructed from an Escherichia coli strain Tan109, derived from JM109, in which the Ag43 gene was deleted and a recombinant plasmid (pETAg43′) expressing a partial Ag43 gene was introduced. The extracellular domain of angiogenesis‐related endoglin gene was then subcloned into plasmid pETAg43′, resulting in a recombinant plasmid pETAg43′/ENDe which was then used to transform Tan109 for protein expression. We found that Ag43 and endoglin chimeric protein (Ag43′/ENDe) was expressed on the bacterial surface. The chimeric protein could be separated from the bacterial surface by heating to 60°C and yet retain activity. We used Ag43′/ENDe as a protein vaccine and found that it could disrupt immune tolerance against endoglin by inducing significant antitumor activities and inhibit angiogenesis in several tumor models without significant side effects. These data suggest that Ag43′/ENDe chimeric protein is a potential model vaccine for active tumor immunotherapy, and that Ag43 system could be an effective tool for novel vaccine preparation to break immune tolerance to other angiogenesis‐related self‐molecules for cancer therapy.
Archives of Pharmacal Research | 2018
Huan-Ge Zhao; Song-Lin Zhou; Ying-Ying Lin; Hao-Fu Dai; Feng-Ying Huang
Natural plant compounds with potent proliferation inhibition and apoptosis induction properties have been screened as novel anticancer drugs. Toxicarioside N (Tox N) was isolated from the seeds of the tropical plant Antiaris toxicaria in Hainan province, China. To our knowledge, the effects that Tox N has on the apoptosis of SGC-7901 cells and its potential mechanism have never been investigated. In this study, we detected the anticancer activities of Tox N and explored the potential mechanism in the human gastrointestinal cancer cell line SGC-7901. Here, we found that Tox N inhibited SGC-7901 cell growth in a dose- and time-dependent manner and induced apoptosis in cells based on cell morphology and flow cytometry analyses. Additionally, the SGC-7901 cell treated with Tox N up-regulated the expression level of cleaved caspase-3/9 and PARP, increased the Bax/Bcl-2 ratio, and led to the release of cytochrome c into the cytoplasm. In addition, Tox N treatment led to the phosphorylation of p38MAPK. SB203580, a p38MAPK inhibitor, partially attenuated Tox N induced apoptosis by preventing the activation of caspase-3/9 and PARP. Our results indicated for the first time that Tox N can induce SGC-7901 cells apoptosis by activating the p38MAPK pathway.
Archives of Pharmacal Research | 2018
Huan-Ge Zhao; Song-Lin Zhou; Ying-Ying Lin; Hua Wang; Hao-Fu Dai; Feng-Ying Huang
Toxicarioside N (Tox N), a natural product extract from Antiaris toxicaria, has been reported to induce apoptosis in human gastric cancer cells. However, the mechanism and actual role of autophagy in Tox N-induced apoptosis of human gastric cancer cells remains poorly understood. In the current study, we demonstrated that Tox N could induce autophagy by inhibiting the Akt/mTOR signaling pathway in SGC-7901 cells. Moreover, we found that the inhibition of autophagy by 3-methyladenine, an autophagy inhibitor, enhanced Tox N-induced apoptotic cell death. However, the stimulation of autophagy by rapamycin, an autophagy activator, remarkably suppressed Tox N-induced apoptosis, suggesting that autophagy plays a protective role in Tox N-induced apoptosis. Thus, the results from this study suggested that Tox N combination with an autophagy inhibitor might be a promising strategy to enhance the anticancer activity of Tox N for the treatment of human gastric cancer.
Archives of Pharmacal Research | 2016
Song-Lin Zhou; Min Wang; Huan-Ge Zhao; Yong-hao Huang; Ying-Ying Lin; Guang-Hong Tan; Shung-lin Chen
Nanoscience and Nanotechnology Letters | 2017
Zhuoxuan Lu; Feng-Ying Huang; Rong Cao; Ying-Ying Lin; Song-lin Zhou; Huan-Ge Zhao; Yong-hao Huang; Liming Zhang; Guang-Hong Tan