Huan Xue
Huazhong University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Huan Xue.
IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2008
Huan Xue; Yuantai Hu; Qing-Ming Wang
This paper presents a novel approach for designing broadband piezoelectric harvesters by integrating multiple piezoelectric bimorphs (PBs) with different aspect ratios into a system. The effect of 2 connecting patterns among PBs, in series and in parallel, on improving energy harvesting performance is discussed. It is found for multifrequency spectra ambient vibrations: 1) the operating frequency band (OFB) of a harvesting structure can be widened by connecting multiple PBs with different aspect ratios in series; 2) the OFB of a harvesting structure can be shifted to the dominant frequency domain of the ambient vibrations by increasing or decreasing the number of PBs in parallel. Numerical results show that the OFB of the piezoelectric energy harvesting devices can be tailored by the connection patterns (i.e., in series and in parallel) among PBs.
Smart Materials and Structures | 2007
Yuantai Hu; Huan Xue; Hongping Hu
We study the technique to adjust the performance of a piezoelectric bimorph vibrating in the flexural mode through axial preloads, which is useful for a power harvester to effectively scavenge energy from ambient mechanical vibrations/noise with varying-frequency spectra. The external circuit connected to the bimorph is simplified as an impedance in the analysis. Analytical solutions are derived. The analyses show that resonance happens when the natural frequency of the bimorph is adjusted adjacent to the external driving frequency by preloading, and the output power density can be raised many more times in that case. The mechanism for an axial preload to improve the bimorph performance at varying-frequency vibrations is examined in detail.
IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2007
Hongping Hu; Huan Xue; Yuantai Hu
A piezoelectric energy harvester consists of a spiral-shaped piezoelectric bimorph to transfer mechanical energy into electric energy, an electrochemical battery to store the scavenged electric energy, and a rectifier together with a step-down dc-dc converter to connect the two components as an integrated system. A spiral-shaped harvesting structure is studied in this paper because it is very useful in the microminiaturization of advanced sensing technology. The aim of employing a step-down dc-dc converter in the storage circuit is to match the optimal output voltage of the piezoelectric bimorph with the battery voltage for efficient charging. In order to raise the output power density of a harvesting element, moreover, we apply a synchronized switch harvesting on inductor (SSHI) in parallel with the piezoelectric bimorph to artificially extend the closed-circuit interval of the rectifier. Numerical results show that the introduction of a dc-dc converter in the storage circuit or a SSHI in the harvesting structure can raise the charging efficiency several times higher than a harvester without a dc-dc converter or an SSHI
IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2006
Yuantai Hu; Huan Xue; Jiashi Yang; Qing Jiang
We analyze the behavior of a model piezoelectric power harvester near resonance. Nonlinear effects of large deformations due to resonance are considered using a cubic theory of the displacement gradient. Results on the output current and power are presented, which exhibit multivaluedness and jump phenomena.
IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2008
Yuantai Hu; Huan Xue; Ting Hu; Hongping Hu
This paper studies the performance of an energy harvester with a piezoelectric bimorph (PB) and a real electrochemical battery (ECB), both are connected as an integrated system through a rectified dc-dc converter (DDC). A vibrating PB can scavenge energy from the operating environment by the electromechanical coupling. A DDC can effectively match the optimal output voltage of the harvesting structure to the battery voltage. To raise the output power density of PB, a synchronized switch harvesting inductor (SSHI) is used in parallel with the harvesting structure to reverse the voltage through charge transfer between the output electrodes at the transition moments from closed-to open-circuit. Voltage reversal results in earlier arrival of rectifier conduction because the output voltage phases of any two adjacent closed-circuit states are just opposite each other. In principle, a PB is with a smaller, flexural stiffness under closed-circuit condition than under open-circuit condition. Thus, the PB subjected to longer closed-circuit condition will be easier to be accelerated. A larger flexural velocity makes the PB to deflect with larger amplitude, which implies that more mechanical energy will be converted into an electric one. Nonlinear interface between the vibrating PB and the modulating circuit is analyzed in detail, and the effects of SSHI and DDC on the charging efficiency of the storage battery are researched numerically. It was found that the introduction of a DDC in the modulating circuit and an SSHI in the harvesting structure can raise the charging efficiency by several times.
IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2008
Huan Xue; Hongping Hu
Based on the von Karman thin circular plate theory, we report in this paper the analysis of the nonlinear behavior of a power harvester consisting of a circular piezoelectric plate and an electric resistance. Dependence of the output power of the harvester upon driving frequency for different electric loads and different applied forces is obtained. Numerical results show that the output power exhibits multi- valuedness and a jump phenomenon near resonance.
Ferroelectrics Letters Section | 2007
Jiashi Yang; Huan Xue; Yuantai Hu
We study stress fields near the edge of an electrode by finite element method. Von Mises Stress near an electrode edge is calculated. The effect of the curvature of the electrode is examined. Stress concentration is observed and a technique for its reduction is suggested.
IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2011
Yuantai Hu; Jining Wang; Feng Yang; Huan Xue; Hongping Hu; Ji Wang
The effects of first-order strain gradient in micro piezoelectric-bimorph (PB) power harvesters are investigated by including the first-order gradient terms in the energy density functions. For a PB, the gradient effects can be focused on the analysis of the strain gradient effect in the thickness direction through choosing the strains and the electric displacements as the independent constitutive variables. It is shown theoretically that the first-order gradient effects have raised the natural frequency of the PB and effectively enhanced the output power density of the harvester.
IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2013
Yuantai Hu; Huiliang Hu; Bin Luo; Huan Xue; Jiemin Xie; Ji Wang
A two-dimensional model was established to study the dynamic characteristics of a quartz crystal resonator with the upper surface covered by an array of hemispherical material units. A frequency-dependent equivalent mass ratio was proposed to simulate the effect of the covered units on frequency shift of the resonator system. It was found that the equivalent mass ratio alternately becomes positive or negative with change of shear modulus and radius of each material unit, which indicates that the equivalent mass ratio is strongly related to the vibration mode of the covered loadings. The further numerical results show the cyclical feature in the relationship of frequency shift and shear modulus/radius as expected. The solutions are useful in the analysis of frequency stability of quartz resonators and acoustic wave sensors.A two-dimensional model was established to study the dynamic characteristics of a quartz crystal resonator with the upper surface covered by an array of hemispherical material units. A frequency-dependent equivalent mass ratio was proposed to simulate the effect of the covered units on frequency shift of the resonator system. It was found that the equivalent mass ratio alternately becomes positive or negative with change of shear modulus and radius of each material unit, which indicates that the equivalent mass ratio is strongly related to the vibration mode of the covered loadings. The further numerical results show the cyclical feature in the relationship of frequency shift and shear modulus/radius as expected. The solutions are useful in the analysis of frequency stability of quartz resonators and acoustic wave sensors.
IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2007
Huan Xue; Yuantai Hu; Qing-Ming Wang; Jiashi Yang
We analyze temperature-induced frequency shift in a thickness mode bulk acoustic wave resonator with a layer of another material for temperature compensation. The perturbation integral by Tiersten is used to calculate frequency shifts in the resonator under a temperature change. It is shown that, with a proper design of the compensation layer, temperature sensitivity of the resonator can be reduced or made zero.