Huan You Gan
Monash University Malaysia Campus
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Huan You Gan.
Genome Biology and Evolution | 2015
Christopher M. Austin; Mun Hua Tan; Laurence J. Croft; Michael P. Hammer; Huan You Gan
The Asian arowana (Scleropages formosus) is of commercial importance, conservation concern, and is a representative of one of the oldest lineages of ray-finned fish, the Osteoglossomorpha. To add to genomic knowledge of this species and the evolution of teleosts, the genome of a Malaysian specimen of arowana was sequenced. A draft genome is presented consisting of 42,110 scaffolds with a total size of 708 Mb (2.85% gaps) representing 93.95% of core eukaryotic genes. Using a k-mer-based method, a genome size of 900 Mb was also estimated. We present an update on the phylogenomics of fishes based on a total of 27 species (23 fish species and 4 tetrapods) using 177 orthologous proteins (71,360 amino acid sites), which supports established relationships except that arowana is placed as the sister lineage to all teleost clades (Bayesian posterior probability 1.00, bootstrap replicate 93%), that evolved after the teleost genome duplication event rather than the eels (Elopomorpha). Evolutionary rates are highly heterogeneous across the tree with fishes represented by both slowly and rapidly evolving lineages. A total of 94 putative pigment genes were identified, providing the impetus for development of molecular markers associated with the spectacular colored phenotypes found within this species.
Frontiers in Cellular and Infection Microbiology | 2015
Han Ming Gan; Huan You Gan; Nurul H. Ahmad; Nazrin A. Aziz; André O. Hudson; Michael A. Savka
Here we report the draft genomes and annotation of four N-acyl homoserine lactone (AHL)-producing members from the family Sphingomonadaceae. Comparative genomic analyses of 62 Sphingomonadaceae genomes were performed to gain insights into the distribution of the canonical luxI/R-type quorum sensing (QS) network within this family. Forty genomes contained at least one luxR homolog while the genome of Sphingobium yanoikuyae B1 contained seven Open Reading Frames (ORFs) that have significant homology to that of luxR. Thirty-three genomes contained at least one luxI homolog while the genomes of Sphingobium sp. SYK6, Sphingobium japonicum, and Sphingobium lactosutens contained four luxI. Using phylogenetic analysis, the sphingomonad LuxR homologs formed five distinct clades with two minor clades located near the plant associated bacteria (PAB) LuxR solo clade. This work for the first time shows that 13 Sphingobium and one Sphingomonas genome(s) contain three convergently oriented genes composed of two tandem luxR genes proximal to one luxI (luxR-luxR-luxI). Interestingly, luxI solos were identified in two Sphingobium species and may represent species that contribute to AHL-based QS system by contributing AHL molecules but are unable to perceive AHLs as signals. This work provides the most comprehensive description of the luxI/R circuitry and genome-based taxonomical description of the available sphingomonad genomes to date indicating that the presence of luxR solos and luxI solos are not an uncommon feature in members of the Sphingomonadaceae family.
Genome Announcements | 2014
Huan You Gan; Han Ming Gan; Michael A. Savka; Alexander J. Triassi; Matthew S. Wheatley; Lawrence B. Smart; Eric S. Fabio; André O. Hudson
ABSTRACT Shrub willow, Salix spp. and hybrids, is an important bioenergy crop. Here we report the whole-genome sequences and annotation of 13 endophytic bacteria from stem tissues of Salix purpurea grown in nature and from commercial cultivars and Salix viminalis × Salix miyabeana grown in bioenergy fields in Geneva, New York.
Mitochondrial DNA | 2016
Han Ming Gan; Mun Hua Tan; Huan You Gan; Yin Peng Lee; Mark B. Schultz; Christopher M. Austin
Abstract The mitogenome of the black yabby, Geocharax gracilis, was sequenced using the MiSeq Personal Sequencer. It has 15,924 base pairs consisting of 13 protein-coding genes, 2 ribosomal subunit genes, 23 transfer RNAs, and a non-coding AT-rich region. The base composition of G. gracilis mitogenome is 32.18% for T, 22.32% for C, 34.83% for A, and 10.68% for G, with an AT bias of 67.01%. The mitogenome gene order is typical for that of parastacid crayfish with the exception of some minor rearrangements involving tRNA genes.
Mitochondrial DNA | 2015
Han Ming Gan; Huan You Gan; Yin Peng Lee; Frederic Grandjean; Christopher M. Austin
Abstract The invasive freshwater crayfish Orconectes limosus mitogenome was recovered by genome skimming. The mitogenome is 16,223 base pairs in length consisting of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a non-coding AT-rich region. The O. limosus mitogenome has an AT bias of 71.37% and base composition of 39.8% for T, 10.3% for C, 31.5% for A, and 18.4% for G. The mitogene order is identical to two other genera of northern hemisphere crayfish that have been sequenced for this organelle.
Mitochondrial DNA | 2015
Han Ming Gan; Huan You Gan; Mun Hua Tan; Shane Penny; Richard C. Willan; Christopher M. Austin
Abstract The complete mitochondrial genome of the commercially and ecologically important and internationally vulnerable giant clam Tridacna squamosa was recovered by genome skimming using the MiSeq platform. The T. squamosa mitogenome has 20,930 base pairs (62.35% A+T content) and is made up of 12 protein-coding genes, 2 ribosomal subunit genes, 24 transfer RNAs, and a 2594 bp non-coding AT-rich region. The mitogenome has a relatively large insertion in the atp6 gene. This is the first mitogenome to be sequenced from the genus Tridacna, and the family Tridacnidae and represents a new gene order.
Mitochondrial DNA | 2015
Frederic Grandjean; Mun Hua Tan; Huan You Gan; Han Ming Gan; Christopher M. Austin
Abstract The Austropotamobius pallipes complete mitogenome has been recovered using Next-Gen sequencing. Our sample of A. pallipes has a mitogenome of 15,679 base pairs (68.44% A + T content) made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a 877 bp non-coding AT-rich region. This is the first mitogenome sequenced for a crayfish from the family Astacidae and the 4th for northern hemisphere genera.
Geobiology | 2015
Marta E. Torres; T. Cox; W.-L. Hong; J. McManus; J. C. Sample; C. Destrigneville; Han Ming Gan; Huan You Gan; John W. Moreau
We present data from sediment cores collected from IODP Site C0012 in the Shikoku Basin. Our site lies at the Nankai Trough, just prior to subduction of the 19 Ma Philippine Sea plate. Our data indicate that the sedimentary package is undergoing multiple routes of electron transport and that these differing pathways for oxidant supply generate a complex array of metabolic routes and microbial communities involved in carbon cycling. Numerical simulations matched to pore water data document that Ca(2+) and Cl(1-) are largely supplied via diffusion from a high-salinity (44.5 psu) basement fluid, which supports the presence of halophile Archean communities within the deep sedimentary package that are not observed in shallow sediments. Sulfate supply from basement supports anaerobic oxidation of methane (AOM) at a rate of ~0.2 pmol cm(-3) day(-1) at ~400 mbsf. We also note the disappearance of δ-Proteobacteria at 434 mbsf, coincident with the maximum in methane concentration, and their reappearance at 463 mbsf, coinciding with the observed deeper increase in sulfate concentration toward the basement. We did not, however, find ANME representatives in any of the samples analyzed (from 340 to 463 mbsf). The lack of ANME may be due to an overshadowing effect from the more dominant archaeal phylotypes or may indicate involvement of unknown groups of archaea in AOM (i.e., unclassified Euryarchaeota). In addition to the supply of sulfate from a basement aquifer, the deep biosphere at this site is also influenced by an elevated supply of reactive iron (up to 143 μmol g(-1)) and manganese (up to 20 μmol g(-1)). The effect of these metal oxides on the sulfur cycle is inferred from an accompanying sulfur isotope fractionation much smaller than expected from traditional sulfate-reducing pathways. The detection of the manganese- and iron-reducer γ-Proteobacteria Alteromonas at 367 mbsf is consistent with these geochemical inferences.
Genome Announcements | 2014
Huan You Gan; Han Ming Gan; Alexander Mario Tarasco; Nurfatini Idayu Busairi; Hazel A. Barton; André O. Hudson; Michael A. Savka
ABSTRACT Here, we report the whole-genome sequences and annotation of five oligotrophic bacteria from two sites within the Lechuguilla Cave in the Carlsbad Caverns National Park, NM. Three of the five genomes contain an acyl-homoserine lactone signal synthase ortholog (luxI) that is involved in cell-to-cell communication via quorum sensing.
Mitochondrial DNA | 2016
Huan You Gan; Han Ming Gan; Mun Hua Tan; Yin Peng Lee; Christopher M. Austin
Abstract The complete mitochondrial genome of the hermit crab Clibanarius infraspinatus was recovered by genome skimming using Next-Gen sequencing. The Clibanarius infraspinatus mitogenome has 16,504 base pairs (67.94% A + T content) made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs and a putative 1500 bp non-coding AT-rich region. The Clibanarius infraspinatus mitogenome sequence is the first for the family Diogenidae and the second for the superfamily Paguroidea and exhibits a translocation of the ND3 gene not previously reported for the Decapoda.