Huan-n Yu
Jinan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Huan-n Yu.
Environmental Pollution | 2016
Huan-Yun Yu; Chuanping Liu; Jishu Zhu; Fangbai Li; Dong-Mei Deng; Qi Wang; Chengshuai Liu
Cadmium (Cd) availability can be significantly affected by soil properties. The effect of pH value on Cd availability has been confirmed. Paddy soils in South China generally contain high contents of iron (Fe). Thus, it is hypothesized that Fe fractions, in addition to pH value, may play an important role in the Cd bioavailability in paddy soil and this requires further investigation. In this study, 73 paired soil and rice plant samples were collected from paddy fields those were contaminated by acid mine drainage containing Cd. The contents of Fe in the amorphous and DCB-extractable Fe oxides were significantly and negatively correlated with the Cd content in rice grain or straw (excluding DCB-extractable Fe vs Cd in straw). In addition, the concentration of HCl-extractable Fe(II) derived from Fe(III) reduction was positively correlated with the Cd content in rice grain or straw. These results suggest that soil Fe redox could affect the availability of Cd in rice plant. Contribution assessment of soil properties to Cd accumulation in rice grain based on random forest (RF) and stochastic gradient boosting (SGB) showed that pH value should be the most important factor and the content of Fe in the amorphous Fe oxides should be the second most important factor in affecting Cd content in rice grain. Overall, compared with the studies from temperate regions, such as Europe and northern China, Fe oxide exhibited its unique role in the bioavailability of Cd in the reddish paddy soil from our study area. The exploration of practical remediation strategies for Cd from the perspective of Fe oxide may be promising.
Environmental Pollution | 2015
Chuanping Liu; Huan-Yun Yu; Chengshuai Liu; Fangbai Li; Xianghua Xu; Qi Wang
The effect of iron (Fe) redox cycling on the mobility and bioavailability of arsenic (As) in paddy soils has attracted increasing concerns, especially in Asia, where the paddy soil is characteristic of Fe with high abundance and activity. However, whether amorphous Fe oxide-bound As acts as a source or a sink of As in natural field conditions needs to be clarified further. In this study, 73 pairs of soil and rice were collected from paddy fields contaminated by As-containing acid mining drainage. The most significant correlations between the iron fractions and As fractions suggest that Fe redox cycling can directly affect As fractionation in soils, which can then indirectly affect As bioavailability. Significantly negative correlations between amorphous Fe oxide-bound As in soil and As in rice grain were found, indicating that amorphous Fe oxide-bound As acts a sink of As.
Environmental Pollution | 2016
Huan-Yun Yu; Xiaodong Ding; Fangbai Li; Xiangqin Wang; Shirong Zhang; Jicai Yi; Chuanping Liu; Xianghua Xu; Qi Wang
Adequate silicon (Si) can greatly boost rice yield and improve grain quality through alleviating stresses associated with heavy metals and metalloids such as arsenic (As) and cadmium (Cd). The soil plant-available Si is relatively low in South China due to severe desilicification and allitization of the soils in this region. Conversely, pollution of heavy metals and metalloids in the soils of this region occurs widely, especially As and Cd pollution in paddy soil. Therefore, evaluating the plant availability of Si in paddy soil of South China and examining its correlation with the availability of heavy metals and metalloids are of great significance. Accordingly, in our study, 107 pairs of soil and rice plant samples were collected from paddy fields contaminated by As and Cd in South China. Significantly positive correlations between Si in rice plants and Si fractions in soils extracted with citric acid, NaOAc-HOAc buffer, and oxalate-ammonium oxalate buffer suggest that these extractants are more suitable for use in extracting plant-available Si in the soils of our present study. Significantly negative correlations between different Si fractions and As or Cd in rice plant tissues and negative exponential correlations between the molar ratios of Si to As/Cd in rice roots, straws, husks or grains and As/Cd in rice grains indicate that Si can significantly alleviate the accumulation of As/Cd from soils to the rice plants. Finally, a contribution assessment of soil properties to As/Cd accumulation in rice grains based on random forest showed that in addition to Si concentrations in soil or rice plants, other factors such as Fe fractions and total phosphorus also contributed largely to As/Cd accumulation in rice grains. Overall, Si exhibited its unique role in mitigating As or Cd stress in rice, and our study results provide strong field evidence for this role.
Journal of Hazardous Materials | 2014
Huan-Yun Yu; Yong-kui Wang; Pengcheng Chen; Fangbai Li; Manjia Chen; Min Hu
Pentachlorophenol (PCP) is widely distributed in the soil, and nitrogen fertilizer is extensively used in agricultural production. However, studies on the fate of organic contaminants as affected by nitrogen fertilizer application have been rare and superficial. The present study aimed to examine the effect of ammonium chloride (NH4Cl) and urea (CO(NH2)2) application on the reductive transformation of PCP in a paddy soil. The study showed that the addition of low concentrations of NH4Cl/CO(NH2)2 enhanced the transformation of PCP, while the addition of high concentrations of NH4Cl/CO(NH2)2 had the opposite effect. The variations in the abundance of soil microbes in response to NH4Cl/CO(NH2)2 addition showed that both NH4Cl and CO(NH2)2 had inhibitory effects on the growth of dissimilatory iron-reducing bacteria (DIRB) of the genus Comamonas. In contrast, for the genus Shewanella, low concentrations of NH4Cl inhibited growth, and high concentrations of NH4Cl enhanced growth, whereas all concentrations of CO(NH2)2 showed enhancement effects. In addition, consistent patterns of variation were found between the abundances of dechlorinating bacteria in the genus Dehalobacter and PCP transformation rates under NH4Cl/CO(NH2)2 addition. In conclusion, nitrogen application produced variations in the structure of the soil microbial community, especially in the abundance of dissimilatory iron-reducing bacteria and dechlorinating bacteria, which, in turn, affected PCP dechlorination.
Environmental Pollution | 2018
Huan-Yun Yu; Chunying Chang; Fangbai Li; Qi Wang; Manjia Chen; Jie Zhang
Thallium (Tl), a rare metal, is universally present in the environment with high toxicity and accumulation. Thalliums behavior and fate require further study, especially in the Pearl River Delta (PRD), where severe Tl pollution incidents have occurred. One hundred two pairs of soil and flowering cabbage samples and 91 pairs of soil and lettuce samples were collected from typical farmland protection areas and vegetable bases across the PRD, South China. The contamination levels and spatial distributions of soil and vegetable (flowering cabbages and lettuces) Tl across the PRD were investigated. The relative contributions of soil properties to the bioavailability of Tl in vegetables were evaluated using random forest. Random forest is an accurate learning algorithm and is superior to conventional and correlation-based regression analyses. In addition, the health risks posed by Tl exposure via vegetable intake for residents of the PRD were assessed. The results indicated that rapidly available potassium (K) and total K in soil were the most important factors affecting Tl bioavailability, and the competitive effect of rapidly available K on vegetable Tl uptake was confirmed in this field study. Soil weathering also contributed substantially to Tl accumulation in the vegetables. In contrast, organic matter might not be a major factor affecting the mobility of Tl in most of the lettuce soils. Fe and manganese (Mn) oxides also contributed little to the bioavailability of Tl. A risk assessment suggested that the health risks for Tl exposure through flowering cabbage or lettuce intake were minimal.
Science of The Total Environment | 2019
Xiangqin Wang; Huan-Yun Yu; Fangbai Li; Tongxu Liu; Weijian Wu; Chuanping Liu; Chengshuai Liu; Xiaoqing Zhang
Organic matter (OM) plays an important role in the mobility of heavy metal(loid)s. Peat containing abundant OM can be used as an organic fertilizer improving physical and chemical properties of soil. Previous studies indicated that the immobilization of heavy metal(loid)s by peat is affected by the presence of metal oxides and/or hydroxides and that Fe-enriched peat is very effective in immobilizing metal(loid)s. Accordingly, we hypothesize that simultaneous application of peat and Fe-containing compounds may pronouncedly immobilize heavy metal(loid)s. In this study, the effects of the combined applications of woody peat and Fe(NO3)3 on As and Cd mobilities and accumulations in rice during the whole growth period were investigated by a pot experiment. The combined applications of woody peat and Fe(NO3)3 significantly decreased As(III) and Cd in porewater due to pH increases induced by applications of Fe(NO3)3, and these decreases were enhanced with increasing Fe(NO3)3. In addition, simultaneous application of peat and Fe(NO3)3 significantly decreased mobile portions of As and Cd but significantly increased their immobile portions. Increasing Fe(NO3)3 increased the amount of As immobilized by poorly crystalline Fe oxides. The formation of Fe plaques and production of poorly crystalline Fe oxides were enhanced by Fe(NO3)3 addition, which also contributed to the immobilization of As and Cd in soil. Overall, the combined applications of woody peat and Fe(NO3)3 provided a strategy for simultaneously immobilizing As and Cd in soils and further alleviating their accumulations from soil to rice plants. In paddy soil, the frequent occurrence of iron redox activity due to the alternating wetting and drying cycles provided favorable conditions for interactions between Fe and OM, and this process and its associated metal(loid) immobilization may be more important than we thought and need further study.
Science of The Total Environment | 2018
Qi Wang; Jianfeng Liu; Zhao Chen; Fangbai Li; Huan-Yun Yu
A comprehensive and fact-based risk assessment of heavy metals in soils is paramount for defining strategies for environmental management. However, the risk assessment approaches of heavy metals in soils are often incomplete, in particular, causation-based pollution source apportionment is absent at present. Here, we developed a causation-based method framework of an integrated risk assessment of soil heavy metals. This method framework involves risk identification, causation-based source apportionment and an environmental sensitivity assessment. Dongtang Township in Guangdong Province, China was used as a case study. We found that air Cd, the background value and metallurgical industries (Danxia and Fankou plants) were identified as the major causes of soil Cd, and air and soil Cd as well as water Cd interacted causally. Danxia and Fankou plants, the mining area and background value were the major causes of soil Pb. The risk level and environmental sensitivity of the Danxia and Fankou plants were assessed. This is the first study to establish a causation-based method framework of an integrated risk assessment of soil heavy metals. This framework promotes systematic integration of risk assessment of soil heavy metals and expands traditional research on pollution source apportionment from a correlation-based approach to crucial insights into causation.
Journal of Environmental Management | 2014
Huan-Yun Yu; Yong-kui Wang; Pengcheng Chen; Fangbai Li; Manjia Chen; Min Hu; Xiaoguang Ouyang
Environmental Pollution | 2017
Huan-Yun Yu; Xiangqin Wang; Fangbai Li; Bin Li; Chuanping Liu; Qi Wang; Jing Lei
Environmental Pollution | 2017
Yuqiong Liu; Qingyun Du; Qi Wang; Huan-Yun Yu; Jianfeng Liu; Yu Tian; Chunying Chang; Jing Lei