Huanglong Li
Tsinghua University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Huanglong Li.
Scientific Reports | 2015
Lei Deng; Guoqi Li; Ning Deng; Dong Wang; Ziyang Zhang; Wei He; Huanglong Li; Jing Pei; Luping Shi
The emerging memristor-based neuromorphic engineering promises an efficient computing paradigm. However, the lack of both internal dynamics in the previous feedforward memristive networks and efficient learning algorithms in recurrent networks, fundamentally limits the learning ability of existing systems. In this work, we propose a framework to support complex learning functions by introducing dedicated learning algorithms to a bio-plausible recurrent memristive network with internal dynamics. We fabricate iron oxide memristor-based synapses, with well controllable plasticity and a wide dynamic range of excitatory/inhibitory connection weights, to build the network. To adaptively modify the synaptic weights, the comprehensive recursive least-squares (RLS) learning algorithm is introduced. Based on the proposed framework, the learning of various timing patterns and a complex spatiotemporal pattern of human motor is demonstrated. This work paves a new way to explore the brain-inspired complex learning in neuromorphic systems.
Frontiers in Computational Neuroscience | 2016
Guoqi Li; Lei Deng; Dong Wang; Wei Wang; Fei Zeng; Ziyang Zhang; Huanglong Li; Sen Song; Jing Pei; Luping Shi
Chunking refers to a phenomenon whereby individuals group items together when performing a memory task to improve the performance of sequential memory. In this work, we build a bio-plausible hierarchical chunking of sequential memory (HCSM) model to explain why such improvement happens. We address this issue by linking hierarchical chunking with synaptic plasticity and neuromorphic engineering. We uncover that a chunking mechanism reduces the requirements of synaptic plasticity since it allows applying synapses with narrow dynamic range and low precision to perform a memory task. We validate a hardware version of the model through simulation, based on measured memristor behavior with narrow dynamic range in neuromorphic circuits, which reveals how chunking works and what role it plays in encoding sequential memory. Our work deepens the understanding of sequential memory and enables incorporating it for the investigation of the brain-inspired computing on neuromorphic architecture.
Journal of Electronic Materials | 2016
Huanglong Li; Jing Pei; Luping Shi
Fe doped phase change material GexSbyTez has shown experimentally the ability to alter its magnetic properties by phase change. This engineered spin degree of freedom into the phase change material offers the possibility of logic devices or spintronic devices where they may enable fast manipulation of ferromagnetism by a phase change mechanism. The electronic structures and spin configurations of isolated transition metal dopant in phase change material (iTM-PCM) is important to understand the interaction between localized metal d states and the unique delocalized host states of phase change material. Identifying an impurity center that has, in isolation, a nonvanishing magnetic moment is the first step to study the collective magnetic ordering, which originates from the interaction among close enough individual impurities. Theoretical description of iTM-PCM is challenging. In this work, we use a screened exchange hybrid functional to study the single 3d transition metal impurity in crystalline GeTe and GeSb2Te4. By curing the problem of local density functional (LDA) such as over-delocalization of the 3d states, we find that Fe on the Ge/Sb site has its majority d states fully occupied while its minority d states are empty, which is different from the previously predicted electronic configuration by LDA. From early transition metal Cr to heavier Ni, the majority 3d states are gradually populated until fully occupied and then the minority 3d states begin to be filled. Interpretive orbital interaction pictures are presented for understanding the local and total magnetic moments.Fe doped GST has shown experimentally the ability to alter its magnetic properties by phase change. In this work, we use screened exchange hybrid functional to study the single neutral substitutional 3d transition metal (TM) in crystalline GeTe and GeSb2Te4. By curing the problem of local density functional (LDA) such as over delocalization of the 3d states, we find that Fe on Ge/Sb site has its majority d states fully occupied while its minority d states are empty, which is different than previous predicted electronic configuration by LDA. From early transition metal Cr to heavier Ni, the majority 3d states are gradually populated until fully occupied and then the minority 3d states begin to be filled. In order to study the magnetic contrast, we use lower symmetry crystalline GeTe and GeSb2Te4 as the amorphous phases, respectively, which has been proposed to model the medium range disordering. We find that only Co substitution in r-GeSb2Te4 and s-GeSb2Te4 shows magnetic contrast. The experimental magnetic contrast for Fe doped GST may be due to additional TM-TM interaction, which is not included in our model. It can also be possible that these lower symmetry crystalline models are not sufficient to characterize the magnetic properties of real 3d TM doped amorphous GST.
Scientific Reports | 2018
Ziyang Zhang; Yaoyuan Wang; Yan Luo; Yuhan He; Mingyuan Ma; Rongrong Yang; Huanglong Li
Electrochemical metallization (ECM) memories are among the various emerging non-volatile memory technologies, contending to replace DRAM and Flash and enabling novel neuromorphic computing applications. Typically, the operation of ECM cell is based on the electrochemical redox reactions of the cation supplying active electrode (e.g., Ag, Cu). Although extensively investigated, the possibility of utilizing new materials for the active electrode remains largely undiscussed. In this paper, an ECM cell with a Te active electrode is fabricated. It is found that the SET operation of the device occurs under negative voltage on the active electrode, which is opposite to that of the device with Ag electrode, indicating that the Te electrode supplies Te2− anions by electrochemical reduction. The influence of the electrolyte material on the switching properties is also found to be more significant for devices with Te electrodes. For Pt/GeS/Te and Pt/Ge2Sb2Te5/Te cells, repeatable unipolar and bipolar resistive switching are observed, respectively, which can be attributed to the rupture of the filament by Joule heating for the former and by ECM for the latter in the RESET process. The semiconducting properties of Te, the reversed operating polarity and the electrolyte dependent switching characteristics open up unprecedented prospects for ECM cells.
Scientific Reports | 2018
Ziyang Zhang; Yaoyuan Wang; Guanghan Wang; Jiaming Mu; Mingyuan Ma; Yuhan He; Rongrong Yang; Huanglong Li
Electrochemical metallization (ECM) cell kinetics are strongly determined by the electrolyte and can hardly be altered after the cell has been fabricated. Solid-state property tunable electrolytes in response to external stimuli are therefore desirable to introduce additional operational degree of freedom to the ECM cells, enabling novel applications such as multistate memory and reconfigurable computation. In this work, we use Ge2Sb2Te5(GST) as the electrolyte material whose solid state is switched from the amorphous(a) to the crystalline(c) phase thermally. Electrical heating too is readily achievable. The resistive switching characteristics of the cells with different GST phases are examined. The magnitude of the high resistance, the SET voltage and the on/off ratio are found to be considerably affected by the solid phase of GST, whereas the magnitude of the low resistance is least affected. Moreover, a transition from volatile to nonvolatile SET switching is only observed for c-GST based cell under prolonged voltage sweep, but not for a-GST based cell. This work provides a springboard for more studies on the manipulation of the ECM cell kinetics by tunable electrolyte and the resulting unprecedented device functionalities.
Journal of Luminescence | 2007
Yude Wang; Shuo Zhang; Chunlai Ma; Huanglong Li
Materials Chemistry and Physics | 2008
Yude Wang; Chunlai Ma; Huanglong Li; Shuo Zhang
Nanotechnology | 2004
Xiao Dan Sun; Chunlai Ma; Yujia Wang; Huanglong Li
international electron devices meeting | 2015
Luping Shi; Jing Pei; Ning Deng; Dong Wang; Lei Deng; Yu Wang; Youhui Zhang; Feng Chen; Mingguo Zhao; Sen Song; Fei Zeng; Guoqi Li; Huanglong Li; Cheng Ma
arxiv:physics.app-ph | 2018
Ziyang Zhang; Tianran Li; Yujie Wu; Yinjun Jia; Congwei Tan; Xintong Xu; Guanrui Wang; Juan Lv; Wei Zhang; Yuhan He; Luping Shi; Hailin Peng; Huanglong Li