Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huanjie Yang is active.

Publication


Featured researches published by Huanjie Yang.


Cancer Research | 2006

Disulfiram, a Clinically Used Anti-Alcoholism Drug and Copper-Binding Agent, Induces Apoptotic Cell Death in Breast Cancer Cultures and Xenografts via Inhibition of the Proteasome Activity

Di Chen; Qiuzhi Cindy Cui; Huanjie Yang; Q. Ping Dou

Disulfiram (DSF), a member of the dithiocarbamate family capable of binding copper and an inhibitor of aldehyde dehydrogenase, is currently being used clinically for the treatment of alcoholism. Recent studies have suggested that DSF may have antitumor and chemosensitizing activities, although the detailed molecular mechanisms remain unclear. Copper has been shown to be essential for tumor angiogenesis processes. Consistently, high serum and tissue levels of copper have been found in many types of human cancers, including breast, prostate, and brain, supporting the idea that copper could be used as a potential tumor-specific target. Here we report that the DSF-copper complex potently inhibits the proteasomal activity in cultured breast cancer MDA-MB-231 and MCF10DCIS.com cells, but not normal, immortalized MCF-10A cells, before induction of apoptotic cancer cell death. Furthermore, MDA-MB-231 cells that contain copper at concentrations similar to those found in patients, when treated with just DSF, undergo proteasome inhibition and apoptosis. In addition, when administered to mice bearing MDA-MB-231 tumor xenografts, DSF significantly inhibited the tumor growth (by 74%), associated with in vivo proteasome inhibition (as measured by decreased levels of tumor tissue proteasome activity and accumulation of ubiquitinated proteins and natural proteasome substrates p27 and Bax) and apoptosis induction (as shown by caspase activation and apoptotic nuclei formation). Our study shows that inhibition of the proteasomal activity can be achieved by targeting tumor cellular copper with the nontoxic compound DSF, resulting in selective apoptosis induction within tumor cells.


Molecular Pharmacology | 2006

The Tumor Proteasome Is a Primary Target for the Natural Anticancer Compound Withaferin A Isolated from “Indian Winter Cherry”

Huanjie Yang; Guoqing Shi; Q. Ping Dou

Withaferin A (WA) is a steroidal lactone purified from medicinal plant “Indian Winter Cherry” that is widely researched for its variety of properties, including antitumor effects. However, the primary molecular target of WA is unknown. By chemical structure analysis, we hypothesized that Withaferin A might be a natural proteasome inhibitor. Computational modeling studies consistently predict that C1 and C24 of WA are highly susceptible toward a nucleophilic attack by the hydroxyl group of N-terminal threonine of the proteasomal chymotrypsin subunit β5. Furthermore, WA potently inhibits the chymotrypsin-like activity of a purified rabbit 20S proteasome (IC50 = 4.5 μM) and 26S proteasome in human prostate cancer cultures (at 5-10 μM) and xenografts (4-8 mg/kg/day). Inhibition of prostate tumor cellular proteasome activity in cultures and in vivo by WA results in accumulation of ubiquitinated proteins and three proteasome target proteins (Bax, p27, and IκB-α) accompanied by androgen receptor protein suppression (in androgen-dependent LNCaP cells) and apoptosis induction. Treatment of WA under conditions of the aromatic ketone reduction, or reduced form of Celastrol, had significantly decreased the proteasome-inhibitory and apoptosis-inducing activities. Treatment of human prostate PC-3 xenografts with WA for 24 days resulted in 70% inhibition of tumor growth in nude mice, associated with 56% inhibition of the tumor tissue proteasomal chymotrypsinlike activity. Our results demonstrate that the tumor proteasome β5 subunit is the primary target of WA, and inhibition of the proteasomal chymotrypsin-like activity by WA in vivo is responsible for, or contributes to, the antitumor effect of this ancient medicinal compound.


Cancer Research | 2007

Clioquinol, a therapeutic agent for alzheimer's disease, has proteasome-inhibitory, androgen receptor-suppressing, apoptosis-inducing, and antitumor activities in human prostate cancer cells and xenografts

Di Chen; Qiuzhi Cindy Cui; Huanjie Yang; Raúl A. Barrea; Fazlul H. Sarkar; Shijie Sheng; Bing Yan; G. Prem Veer Reddy; Q. Ping Dou

Tumor growth and metastasis depend on angiogenesis that requires the cofactor copper. Consistently, high levels of copper have been found in many types of human cancers, including prostate, breast, colon, and lung. Recent studies suggest that copper could be used as a novel selective target for cancer therapies. Clioquinol is capable of forming stable complexes with copper and currently used in clinics for treatment of Alzheimers disease. Most recently, it has been reported that clioquinol possesses antitumor effects. However, the underlying molecular mechanism is unclear. We report here that after binding to copper, clioquinol can inhibit the proteasomal chymotrypsin-like activity, repress androgen receptor (AR) protein expression, and induce apoptotic cell death in human prostate cancer LNCaP and C4-2B cells. In addition, clioquinol alone exhibits similar effects in prostate cancer cell lines with elevated copper at concentrations similar to those found in patients. Addition of dihydrotestosterone did not affect clioquinol-mediated proteasome inhibition in both prostate cancer cell lines. However, dihydrotestosterone partially inhibited clioquinol-induced AR suppression and apoptosis only in androgen-dependent LNCaP cells. Animal studies show that clioquinol treatment significantly inhibits the growth of human prostate tumor C4-2B xenografts (by 66%), associated with in vivo proteasome inhibition, AR protein repression, angiogenesis suppression, and apoptosis induction. Our study provides strong evidence that clioquinol is able to target tumor proteasome in vivo in a copper-dependent manner, resulting in formation of an active AR inhibitor and apoptosis inducer that is responsible for its observed antiprostate tumor effect.


International Journal of Cancer | 2009

Shikonin Exerts Antitumor Activity via Proteasome Inhibition and Cell Death Induction in vitro and in vivo

Huanjie Yang; Ping Zhou; Hongbiao Huang; Di Chen; Ningfang Ma; Qiuzhi Cindy Cui; Shouxing Shen; Weihua Dong; Xiaoyan Zhang; Wen Lian; Xuejun Wang; Q. Ping Dou; Jinbao Liu

Dysregulation of the ubiquitin‐proteasome pathway plays an essential role in tumor growth and development. Shikonin, a natural naphthoquinone isolated from the traditional Chinese medicine Zi Cao (gromwell), has been reported to possess tumor cell‐killing activity, and results from a clinical study using a shikonin‐containing mixture demonstrated its safety and efficacy for the treatment of late‐stage lung cancer. In this study, we reported that shikonin is an inhibitor of tumor proteasome activity in vitro and in vivo. Our computational modeling predicts that the carbonyl carbons C1 and C4 of shikonin potentially interact with the catalytic site of β5 chymotryptic subunit of the proteasome. Indeed, shikonin potently inhibits the chymotrypsin‐like activity of purified 20S proteasome (IC50 12.5 μmol/L) and tumor cellular 26S proteasome (IC50 between 2–16 μmol/L). Inhibition of the proteasome by shikonin in murine hepatoma H22, leukemia P388 and human prostate cancer PC‐3 cultures resulted in accumulation of ubiquitinated proteins and several proteasome target proapoptotic proteins (IκB‐α, Bax and p27), followed by induction of cell death. Shikonin treatment resulted in tumor growth inhibition in both H22 allografts and PC‐3 xenografts, associated with suppression of the proteasomal activity and induction of cell death in vivo. Finally, shikonin treatment significantly prolonged the survival period of mice bearing P388 leukemia. Our results indicate that the tumor proteasome is one of the cellular targets of shikonin and inhibition of the proteasome activity by shikonin contributes to its antitumor property.


Advances in Clinical Chemistry | 2011

EGCG, green tea polyphenols and their synthetic analogs and prodrugs for human cancer prevention and treatment.

Di Chen; Sheng Biao Wan; Huanjie Yang; Jian Yuan; Tak Hang Chan; Q. Ping Dou

Cancer-preventive effects of tea polyphenols, especially epigallocatechin-3-gallate (EGCG), have been demonstrated by epidemiological, preclinical, and clinical studies. Green tea polyphenols such as EGCG have the potential to affect multiple biological pathways, including gene expression, growth factor-mediated pathways, the mitogen-activated protein kinase-dependent pathway, and the ubiquitin/proteasome degradation pathway. Therefore, identification of the molecular targets of EGCG should greatly facilitate a better understanding of the mechanisms underlying its anticancer and cancer-preventive activities. Performing structure-activity relationship (SAR) studies could also greatly enhance the discovery of novel tea polyphenol analogs as potential anticancer and cancer-preventive agents. In this chapter, we review the relevant literature as it relates to the effects of natural and synthetic green tea polyphenols and EGCG analogs on human cancer cells and their potential molecular targets as well as their antitumor effects. We also discuss the implications of green tea polyphenols in cancer prevention.


Pharmaceutical Research | 2009

New Difluoro Knoevenagel Condensates of Curcumin, Their Schiff Bases and Copper Complexes as Proteasome Inhibitors and Apoptosis Inducers in Cancer Cells

Subhash Padhye; Huanjie Yang; Abeda Jamadar; Qiuzhi Cindy Cui; Deepak Chavan; Kristin Dominiak; Jaclyn McKinney; Sanjeev Banerjee; Q. Ping Dou; Fazlul H. Sarkar

PurposeEmerging evidence clearly suggests the potential chemopreventive and anti-tumor activity of a well known “natural agent” curcumin. However, studies have shown that curcumin is not readily bioavailable, and thus the tissue bioavailability of curcumin is also poor except for gastrointestinal track. Because of the potential biological activity of curcumin, many studies have attempted for making a better analog of cucumin that is equally effective or better with increased bioavailability, which was the purpose of our current study.MethodsWe have designed and synthesized new difluoro Knoevenagel condensates of curcumin and Schiff bases along with their copper (II) complexes and evaluated their biological activities with respect to the inhibitory effects on purified rabbit 26S proteasome, and growth inhibition and induction of apoptosis in colon and pancreatic cancer cell lines.ResultsAll copper complexes possess distorted square planar geometries with 1:1 metal to ligand stoichiometry with reversible copper redox couple. The difluoro compound CDF exhibited inhibitory effects on purified rabbit 20S proteasome or cellular 26S proteasome, and caused both growth inhibition of cancer cell lines and induced apoptotic cell death in our preliminary assessment.ConclusionOur results suggest that our newly synthesized classes of curcumin analogs could be useful as chemopreventive and/or therapeutic agents against cancers.


Frontiers in Bioscience | 2007

Structure-proteasome-inhibitory activity relationships of dietary flavonoids in human cancer cells.

Di Chen; Marina S. Chen; Qiuzhi Cindy Cui; Huanjie Yang; Dou Qp

Diet high in vegetables and fruits has been associated with reduced cancer risk. However, the involved mechanisms are unknown. Previously, we reported that the dietary flavonoid apigenin could inhibit the proteasome activity and induce apoptosis in tumor cells. To further investigate the structure-proteasome-inhibitory activity relationships, we chose and tested five dietary flavonoids, including luteolin, apigenin, chrysin, naringenin and eriodictyol. We found that the order of inhibitory potencies and apoptosis-inducing potencies of these five compounds in 20S purified proteasome and tumor cells was: (1) luteolin > apigenin > chrysin, and (2) apigenin >> naringenin, and luteolin >> eriodictyol. Therefore, flavonoids with hydroxylized B ring and/or unsaturated C ring are natural potent proteasome inhibitors and tumor cell apoptosis inducers. Furthermore, neither apigenin nor luteolin could inhibit the proteasome and induce apoptosis in non-transformed human natural killer cells. This finding may provide a molecular basis for the clinically observed cancer-preventive effects of fruits and vegetables.


Expert Opinion on Investigational Drugs | 2009

Clinical development of novel proteasome inhibitors for cancer treatment

Huanjie Yang; Jeffrey A. Zonder; Q. Ping Dou

Background: Emerging evidence demonstrates that targeting the tumor proteasome is a promising strategy for cancer therapy. Objective: This review summarizes recent results from cancer clinical trials using specific proteasome inhibitors or some natural compounds that have proteasome-inhibitory effects. Methods: A literature search was carried out using PubMed. Results about the clinical application of specific proteasome inhibitors and natural products with proteasome-inhibitory activity for cancer prevention or therapy were reviewed. Results/conclusion: Bortezomib, the reversible proteasome inhibitor that first entered clinical trials, has been studied extensively as a single agent and in combination with glucocorticoids, cytotoxic agents, immunomodulatory drugs and radiation as treatment for multiple myeloma and other hematological malignancies. The results in some cases have been impressive. There is less evidence of bortezomibs efficacy in solid tumors. Novel irreversible proteasome inhibitors, NPI-0052 and carfilzomib, have also been developed and clinical trials are underway. Natural products with proteasome-inhibitory effects, such as green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG), soy isoflavone genistein, and the spice turmeric compound curcumin, have been studied alone and in combination with traditional chemotherapy and radiotherapy against various cancers. There is also interest in developing these natural compounds as potential chemopreventive agents.


Current Protein & Peptide Science | 2008

Natural compounds with proteasome inhibitory activity for cancer prevention and treatment.

Huanjie Yang; Kristin R. Landis-Piwowar; Di Chen; Vesna Milacic; Dou Qp

The proteasome is a multicatalytic protease complex that degrades most endogenous proteins including misfolded or damaged proteins to ensure normal cellular function. The ubiquitin-proteasome degradation pathway plays an essential role in multiple cellular processes, including cell cycle progression, proliferation, apoptosis and angiogenesis. It has been shown that human cancer cells are more sensitive to proteasome inhibition than normal cells, indicating that a proteasome inhibitor could be used as a novel anticancer drug. Indeed, this idea has been supported by the encouraging results of the clinical trials using the proteasome inhibitor Bortezomib (Velcade, PS-341), a drug approved by the US Food and Drug Administration (FDA). Several natural compounds, including the microbial metabolite lactacystin, green tea polyphenols, and traditional medicinal triterpenes, have been shown to be potent proteasome inhibitors. These findings suggest the potential use of natural proteasome inhibitors as not only chemopreventive and chemotherapeutic agents, but also tumor sensitizers to conventional radiotherapy and chemotherapy. In this review, we will summarize the structures and biological activities of the proteasome and several natural compounds with proteasome inhibitory activity, and will discuss the potential use of these compounds for the prevention and treatment of human cancers.


Current Drug Targets | 2010

Targeting apoptosis pathway with natural terpenoids: implications for treatment of breast and prostate cancer.

Huanjie Yang; Q. Ping Dou

Terpenoids represent a large and diverse class of naturally occurring compounds found in a variety of fruits, vegetables and medicinal plants. Structurally some of the terpenoids are similar to human hormones. A diet rich in terpenoids is inversely related with the risk of chronic diseases including cancers. Breast and prostate cancers are hormone-related diseases and the second leading cause of female and male cancer mortality. Diterpenoid paclitaxel, and its semi-synthetic analogue docetaxel, have entered clinical use against established breast and prostate cancers. Here we reviewed potential molecular targets and biological properties of natural terpenoids, including monoterpenoids, diterpenoids, triterpenoids and tetraterpenoids, and their applications in treatment of human breast and prostate cancers. These terpenoids are able to inhibit tumor cell proliferation and induce tumor cell death by inhibiting multiple cancer-specific targets including the proteasome, NF-kappaB, and antiapoptotic protein Bcl-2. The efficacy of these terpenoids against breast or prostate cancer cells, as demonstrated in pre-clinical studies support clinical application of these naturally occurring terpenoids in treatment of hormone-related human cancers.

Collaboration


Dive into the Huanjie Yang's collaboration.

Top Co-Authors

Avatar

Q. Ping Dou

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Di Chen

Wayne State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anil Wali

Wayne State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Wang

Wayne State University

View shared research outputs
Top Co-Authors

Avatar

Tak Hang Chan

Hong Kong Polytechnic University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge