Huanlei Wang
Ocean University of China
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Huanlei Wang.
Energy and Environmental Science | 2013
Zhi Li; Zhanwei Xu; Xuehai Tan; Huanlei Wang; Chris M. B. Holt; Tyler Stephenson; Brian C. Olsen; David Mitlin
In this work we demonstrate that biomass-derived proteins serve as an ideal precursor for synthesizing carbon materials for energy applications. The unique composition and structure of the carbons resulted in very promising electrochemical energy storage performance. We obtained a reversible lithium storage capacity of 1780 mA h g−1, which is among the highest ever reported for any carbon-based electrode. Tested as a supercapacitor, the carbons exhibited a capacitance of 390 F g−1, with an excellent cycle life (7% loss after 10 000 cycles). Such exquisite properties may be attributed to a unique combination of a high specific surface area, partial graphitization and very high bulk nitrogen content. It is a major challenge to derive carbons possessing all three attributes. By templating the structure of mesoporous cellular foam with egg white-derived proteins, we were able to obtain hierarchically mesoporous (pores centered at ∼4 nm and at 20–30 nm) partially graphitized carbons with a surface area of 805.7 m2 g−1 and a bulk N-content of 10.1 wt%. When the best performing sample was heated in Ar to eliminate most of the nitrogen, the Li storage capacity and the specific capacitance dropped to 716 mA h g−1 and 80 F g−1, respectively.
ACS Nano | 2013
Huanlei Wang; Zhanwei Xu; Alireza Kohandehghan; Zhi Li; Kai Cui; Xuehai Tan; Tyler Stephenson; Cecil K. King’ondu; Chris M. B. Holt; Brian C. Olsen; Jin Kwon Tak; Don Harfield; Anthony O. Anyia; David Mitlin
We created unique interconnected partially graphitic carbon nanosheets (10-30 nm in thickness) with high specific surface area (up to 2287 m(2) g(-1)), significant volume fraction of mesoporosity (up to 58%), and good electrical conductivity (211-226 S m(-1)) from hemp bast fiber. The nanosheets are ideally suited for low (down to 0 °C) through high (100 °C) temperature ionic-liquid-based supercapacitor applications: At 0 °C and a current density of 10 A g(-1), the electrode maintains a remarkable capacitance of 106 F g(-1). At 20, 60, and 100 °C and an extreme current density of 100 A g(-1), there is excellent capacitance retention (72-92%) with the specific capacitances being 113, 144, and 142 F g(-1), respectively. These characteristics favorably place the materials on a Ragone chart providing among the best power-energy characteristics (on an active mass normalized basis) ever reported for an electrochemical capacitor: At a very high power density of 20 kW kg(-1) and 20, 60, and 100 °C, the energy densities are 19, 34, and 40 Wh kg(-1), respectively. Moreover the assembled supercapacitor device yields a maximum energy density of 12 Wh kg(-1), which is higher than that of commercially available supercapacitors. By taking advantage of the complex multilayered structure of a hemp bast fiber precursor, such exquisite carbons were able to be achieved by simple hydrothermal carbonization combined with activation. This novel precursor-synthesis route presents a great potential for facile large-scale production of high-performance carbons for a variety of diverse applications including energy storage.
ACS Nano | 2013
Jia Ding; Huanlei Wang; Zhi Li; Alireza Kohandehghan; Kai Cui; Zhanwei Xu; Beniamin Zahiri; Xuehai Tan; Elmira Memarzadeh Lotfabad; Brian C. Olsen; David Mitlin
We demonstrate that peat moss, a wild plant that covers 3% of the earths surface, serves as an ideal precursor to create sodium ion battery (NIB) anodes with some of the most attractive electrochemical properties ever reported for carbonaceous materials. By inheriting the unique cellular structure of peat moss leaves, the resultant materials are composed of three-dimensional macroporous interconnected networks of carbon nanosheets (as thin as 60 nm). The peat moss tissue is highly cross-linked, being rich in lignin and hemicellulose, suppressing the nucleation of equilibrium graphite even at 1100 °C. Rather, the carbons form highly ordered pseudographitic arrays with substantially larger intergraphene spacing (0.388 nm) than graphite (c/2 = 0.3354 nm). XRD analysis demonstrates that this allows for significant Na intercalation to occur even below 0.2 V vs Na/Na(+). By also incorporating a mild (300 °C) air activation step, we introduce hierarchical micro- and mesoporosity that tremendously improves the high rate performance through facile electrolyte access and further reduced Na ion diffusion distances. The optimized structures (carbonization at 1100 °C + activation) result in a stable cycling capacity of 298 mAh g(-1) (after 10 cycles, 50 mA g(-1)), with ∼150 mAh g(-1) of charge accumulating between 0.1 and 0.001 V with negligible voltage hysteresis in that region, nearly 100% cycling Coulombic efficiency, and superb cycling retention and high rate capacity (255 mAh g(-1) at the 210th cycle, stable capacity of 203 mAh g(-1) at 500 mA g(-1)).
Small | 2011
Huanlei Wang; Qiuming Gao; Lei Jiang
Excellent electrochemical performance results from the coexistence of nickel and cobalt ions, with mesoporous characteristics and nanocrystal structure. Nickel cobalt nanowire is prepared by hydrothermal and thermal decomposition processes. High capacitance of 722 F g(-1) can be obtained at 1 A g(-1) in 6 M KOH, with a capacitance retention ratio of ca. 79% at 20 A g(-1) .
Journal of the American Chemical Society | 2009
Huanlei Wang; Qiuming Gao; Juan Hu
A kind of activated carbon with further carbon dioxide and potassium hydroxide activations for hydrogen storage was investigated. The carbon dioxide and potassium hydroxide activations have apparently different effects on the pore structures and textures of the activated carbon which closely associated with the hydrogen storage properties. The potassium hydroxide activation can remarkably donate microporosity to the frameworks of the activated carbon. One of the resultant porous carbons exhibited a high surface area of up to 3190 m(2) g(-1) and large gravimetric hydrogen uptake capacity of 7.08 wt % at 77 K and 20 bar, which is one of the largest data reported for the porous carbon materials. This result suggests that the porous carbon with large amounts of active sites, high surface area, and high micropore volume related to optimum pore size could achieve high gravimetric hydrogen storage.
Energy and Environmental Science | 2015
Jia Ding; Huanlei Wang; Zhi Li; Kai Cui; Dimitre Karpuzov; Xuehai Tan; Alireza Kohandehghan; David Mitlin
This is the first report of a hybrid sodium ion capacitor (NIC) with the active materials in both the anode and the cathode being derived entirely from a single precursor: peanut shells, which are a green and highly economical waste globally generated at over 6 million tons per year. The electrodes push the envelope of performance, delivering among the most promising sodiation capacity–rate capability–cycling retention combinations reported in the literature for each materials class. Hence the resultant NIC also offers a state-of-the-art cyclically stable combination of energy and power, not only in respect to previously but also as compared to Li ion capacitors (LICs). The ion adsorption cathode based on Peanut Shell Nanosheet Carbon (PSNC) displays a hierarchically porous architecture, a sheet-like morphology down to 15 nm in thickness, a surface area on par with graphene materials (up to 2396 m2 g−1) and high levels of oxygen doping (up to 13.51 wt%). Scanned from 1.5–4.2 V vs. Na/Na+ PSNC delivers a specific capacity of 161 mA h g−1 at 0.1 A g−1 and 73 mA h g−1 at 25.6 A g−1. A low surface area Peanut Shell Ordered Carbon (PSOC) is employed as an ion intercalation anode. PSOC delivers a total capacity of 315 mA h g−1 with a flat plateau of 181 mA h g−1 occurring below 0.1 V (tested at 0.1 A g−1), and is stable at 10 000 cycles (tested at 3.2 A g−1). The assembled NIC operates within a wide temperature range (0–65 °C), yielding at room temperature (by active mass) 201, 76 and 50 W h kg−1 at 285, 8500 and 16 500 W kg−1, respectively. At 1.5–3.5 V, the hybrid device achieved 72% capacity retention after 10 000 cycles tested at 6.4 A g−1, and 88% after 100 000 cycles at 51.2 A g−1.
Energy and Environmental Science | 2014
Zhi Li; Zhanwei Xu; Huanlei Wang; Jia Ding; Beniamin Zahiri; Chris M. B. Holt; Xuehai Tan; David Mitlin
Here we demonstrate a facile template-free synthesis route to create macroscopically monolithic carbons that are both highly nitrogen rich (4.1–7.6 wt%) and highly microporous (SA up to 1405 m2 g−1, 88 vol% micropores). While such materials, which are derived from common chicken egg whites, are expected to be useful in a variety of applications, they are extremely promising for electrochemical capacitors based on aqueous electrolytes. The Highly Functionalized Activated Carbons (HFACs) demonstrate a specific capacitance of >550 F g−1 at 0.25 A g−1 and >350 F g−1 at 10 A g−1 in their optimized state. These are among the highest values reported in the literature for carbon-based electrodes, including for systems such as templated carbons and doped graphene. We show that HFACs serve as ideal negative electrodes in asymmetric supercapacitors, where historically the specific capacitance of the oxide-based positive electrode was mismatched with the much lower specific capacitance of the opposing AC. An asymmetric cell employing HFACs demonstrates a 2× higher specific energy and a 4× higher volumetric energy density as compared to the one employing a high surface area commercial AC. With 3.5 mg cm−2 of HFAC opposing 5.0 mg cm−2 of NiCo2O4/graphene, specific energies (active mass normalized) of 48 W h kg−1 at 230 W kg−1 and 28 W h kg−1 at 1900 W kg−1 are achieved. The asymmetric cell performance is among the best in the literature for hybrid aqueous systems, and actually rivals cells operating with a much wider voltage window in organic electrolytes.
Advanced Materials | 2014
Xinhua Liu; Dongbei Wu; Huanlei Wang; Qigang Wang
Here, we employ a mild self-initiated UV polymerization to prepare an ionic conducting polymer gel, whose non-covalent crosslinking interaction can endow the conducting gel compressive toughness and self-recovering ability. Our system consists of four components: 1-ethyl-3-methylimidazolium chloride (EMIMCl), hydroxyethyl methacrylate (HEMA), chitosan (CS) and water, whose molecular structures have been shown in Figure 1 A. At fi rst, CS and HEMA are dissolved in EMIMCl via heating and cooling process, which forms a viscous solution from the solid of EMIMCl (Figures S1a and 1C). The destroy of crystal structure of EMIMCl is the main reason to form such homogeneous solution, which is caused by the dissolution of CS and HEMA through hydrogen bond. [ 12 ]
Journal of Materials Chemistry | 2016
Wenhua Yu; Huanlei Wang; Shuang Liu; Nan Mao; Xiao Liu; Jing Shi; Wei Liu; Shougang Chen; Xin Wang
Nitrogen and oxygen codoped hierarchical porous carbons have been synthesized by using a direct carbonization/activation procedure of biomass algae – Enteromorpha. The proposed procedure allowed us to produce carbons with high surface area (up to 2073 m2 g−1), sponge-like 3D interconnected structure, combined macro/meso/micropores, and rich N (0.64–0.85 at%) and O (11.36–12.24 at%) doping. The application of the produced carbons in supercapacitors based on an ionic liquid electrolyte showed a high specific capacitance of 201 F g−1 (10.7 μF cm−2) at 1 A g−1 and 20 °C, a capacitance retention ratio of 61% at 100 A g−1 and a capacitance loss of 9% after 10 000 cycles. The devices were able to deliver an energy density of 24 or 35 W h kg−1 (on an active mass normalized basis) at an extremely high power density of 60 kW kg−1 at 20 or 60 °C. The application of the produced carbons in a lithium-ion battery anode based on the LiPF6 electrolyte exhibited a high specific capacity of 1347–1709 mA h g−1, a good initial coulombic efficiency of 61–64%, and a good cyclability up to 500 cycles. We believe that this simple precursor-synthesis route offers excellent potential for facile large-scale material production for supercapacitors and lithium ion batteries.
Journal of Materials Chemistry | 2015
Jia Ding; Zhi Li; Huanlei Wang; Kai Cui; Alireza Kohandehghan; Xuehai Tan; Dimitre Karpuzov; David Mitlin
We employed a glucose mediated hydrothermal self-assembly method to create a SnO2–carbon nanocomposite with promising electrochemical performance as both a sodium and a lithium ion battery anode (NIBs NABs SIBs, LIBs), being among the best in terms of cyclability and rate capability when tested against Na. In parallel we provide a systematic side-by-side comparison of the sodiation vs. lithiation phase transformations in nano SnO2. The high surface area (338 m2 g−1) electrode is named C–SnO2, and consists of a continuous Li and Na active carbon frame with internally imbedded sub-5 nm SnO2 crystallites of high mass loading (60 wt%). The frame imparts excellent electrical conductivity to the electrode, allows for rapid diffusion of Na and Li ions, and carries the sodiation/lithiation stresses while preventing cycling-induced agglomeration of the individual crystals. C–SnO2 employed as a NIB anode displays a reversible capacity of 531 mA h g−1 (at 0.08 A g−1) with 81% capacity retention after 200 cycles, while capacities of 240, 188 and 133 mA h g−1 are achieved at the much higher rates of 1.3, 2.6 and 5 A g−1. As a LIB anode C–SnO2 maintains a capacity of 1367 mA h g−1 (at 0.5 A g−1) after 400 cycles, and 420 mA h g−1 at 10 A g−1. Combined TEM, XRD and XPS prove that the much lower capacity of SnO2 as a NIB anode is due to the kinetic difficulty of the Na–Sn alloying reaction to reach the terminal Na15Sn4 intermetallic, whereas for Li–Sn the Li22Sn5 intermetallic is readily formed at 0.01 V. Rather, with applied voltage a significant portion of the material effectively shuffles between SnO2 and β-Sn + NaO2. The conversion reaction proceeds differently in the two systems: LiO2 is reduced directly to SnO2 and Li, whereas the NaO2 to SnO2 reaction proceeds through an intermediate SnO phase.