Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huanwei Peng is active.

Publication


Featured researches published by Huanwei Peng.


PLOS ONE | 2012

Genome expression profile analysis of the immature maize embryo during dedifferentiation.

Yaou Shen; Zhou Jiang; Xiadong Yao; Zhiming Zhang; Haijian Lin; Maojun Zhao; Hailan Liu; Huanwei Peng; Shujun Li; Guangtang Pan

Maize is one of the most important cereal crops worldwide and one of the primary targets of genetic manipulation, which provides an excellent way to promote its production. However, the obvious difference of the dedifferentiation frequency of immature maize embryo among various genotypes indicates that its genetic transformation is dependence on genotype and immature embryo-derived undifferentiated cells. To identify important genes and metabolic pathways involved in forming of embryo-derived embryonic calli, in this study, DGE (differential gene expression) analysis was performed on stages I, II, and III of maize inbred line 18-599R and corresponding control during the process of immature embryo dedifferentiation. A total of ∼21 million cDNA tags were sequenced, and 4,849,453, 5,076,030, 4,931,339, and 5,130,573 clean tags were obtained in the libraries of the samples and the control, respectively. In comparison with the control, 251, 324 and 313 differentially expressed genes (DEGs) were identified in the three stages with more than five folds, respectively. Interestingly, it is revealed that all the DEGs are related to metabolism, cellular process, and signaling and information storage and processing functions. Particularly, the genes involved in amino acid and carbohydrate transport and metabolism, cell wall/membrane/envelope biogenesis and signal transduction mechanism have been significantly changed during the dedifferentiation. To our best knowledge, this study is the first genome-wide effort to investigate the transcriptional changes in dedifferentiation immature maize embryos and the identified DEGs can serve as a basis for further functional characterization.


Physiologia Plantarum | 2013

Genome expression profile analysis reveals important transcripts in maize roots responding to the stress of heavy metal Pb

Yaou Shen; Yongzhong Zhang; Jie Chen; Haijian Lin; Maojun Zhao; Huanwei Peng; Li Liu; Guangsheng Yuan; Su-zhi Zhang; Zhiming Zhang; Guangtang Pan

Lead (Pb) has become one of the most abundant heavy metal pollutants of the environment. With its large biomass, maize could be an important object for studying the phytoremediation of Pb-contaminated soil. In our previous research, we screened 19 inbred lines of maize for Pb concentration, and line 178 was identified to be a hyperaccumulator for Pb in both the roots and aboveground parts. To identify important genes and metabolic pathways related to Pb accumulation and tolerance, line 178 was underwent genome expression profile under Pb stress and a control (CK). A total of approximately 11 million cDNA tags were sequenced and 4 665 539 and 4 936 038 clean tags were obtained from the libraries of the test and CK, respectively. In comparison to CK, 2379 and 1832 genes were identified up- or downregulated, respectively, more than fivefolds under Pb stress. Interestingly, all the genes were related to cellular processes and signaling, information storage and processing or metabolism functions. Particularly, the genes involved in posttranslational modification, protein turnover and chaperones; signal transduction, carbohydrate transport and metabolism; and lipid transport and metabolism significantly changed under the treatment. In addition, seven pathways including ribosome, photosynthesis, and carbon fixation were affected significantly, with 118, 12, 34, 21, 18, 72 and 43 differentially expressed genes involved. The significant upregulation of the ribosome pathway may reveal an important secret for Pb tolerance of line 178. And the sharp increase of laccase transcripts and metal ion transporters were suggested to account in part for Pb hyperaccumulation in the line.


Biochemical and Biophysical Research Communications | 2013

Combined small RNA and degradome sequencing reveals microRNA regulation during immature maize embryo dedifferentiation

Yaou Shen; Zhou Jiang; Sifen Lu; Haijian Lin; Shibin Gao; Huanwei Peng; Guangsheng Yuan; Li Liu; Zhiming Zhang; Maojun Zhao; Tingzhao Rong; Guangtang Pan

Genetic transformation of maize is highly dependent on the development of embryonic calli from the dedifferentiated immature embryo. To better understand the regulatory mechanism of immature embryo dedifferentiation, we generated four small RNA and degradome libraries from samples representing the major stages of dedifferentiation. More than 186 million raw reads of small RNA and degradome sequence data were generated. We detected 102 known miRNAs belonging to 23 miRNA families. In total, we identified 51, 70 and 63 differentially expressed miRNAs (DEMs) in the stage I, II, III samples, respectively, compared to the control. However, only 6 miRNAs were continually up-regulated by more than fivefold throughout the process of dedifferentiation. A total of 87 genes were identified as the targets of 21 DEM families. This group of targets was enriched in members of four significant pathways including plant hormone signal transduction, antigen processing and presentation, ECM-receptor interaction, and alpha-linolenic acid metabolism. The hormone signal transduction pathway appeared to be particularly significant, involving 21 of the targets. While the targets of the most significant DEMs have been proved to play essential roles in cell dedifferentiation. Our results provide important information regarding the regulatory networks that control immature embryo dedifferentiation in maize.


Physiologia Plantarum | 2016

Genome‐wide analysis of transcription factors involved in maize embryonic callus formation

Fei Ge; Xu Luo; Xing Huang; Yanling Zhang; Xiujing He; Min Liu; Haijian Lin; Huanwei Peng; Lujiang Li; Zhiming Zhang; Guangtang Pan; Yaou Shen

In this study, a maize inbred line with a strong capacity to induce embryonic callus, 18-599R, was used to analyze the transcription factors expressed during embryonic callus formation. A total of 1180 transcription factors were found to be expressed during three key stages of callus induction. Of these, compared with control, 361, 346 and 328 transcription factors were significantly downregulated during stages I, II and III, respectively. In contrast, 355, 372 and 401 transcription factors (TFs) were upregulated during the respective stages. We constructed a transcription factor-mediated regulatory network and found that plant hormone signal transduction was the pathway most significantly enriched among TFs. This pathway includes 48 TFs regulating cell enlargement, cell differentiation, cell division and cell dedifferentiation via the response to plant hormones. Through real-time polymerase chain reaction (PCR) and degradome sequencing, we identified 23 transcription factors that are regulated by miRNA. Through further analysis, ZmMYB138, a member of the MYB transcription factor family localized in the nucleus, was verified to promote embryonic callus formation in the maize embryo through GA signal transduction.


Frontiers in Plant Science | 2018

Genetic Dissection of Maize Embryonic Callus Regenerative Capacity Using Multi-Locus Genome-Wide Association Studies

Langlang Ma; Min Liu; Yuanyuan Yan; Chunyan Qing; Xiaoling Zhang; Yanling Zhang; Yun Long; Lei Wang; Lang Pan; Chaoying Zou; Zhaoling Li; Yanli Wang; Huanwei Peng; Guangtang Pan; Zhou Jiang; Yaou Shen

The regenerative capacity of the embryonic callus, a complex quantitative trait, is one of the main limiting factors for maize transformation. This trait was decomposed into five traits, namely, green callus rate (GCR), callus differentiating rate (CDR), callus plantlet number (CPN), callus rooting rate (CRR), and callus browning rate (CBR). To dissect the genetic foundation of maize transformation, in this study multi-locus genome-wide association studies (GWAS) for the five traits were performed in a population of 144 inbred lines genotyped with 43,427 SNPs. Using the phenotypic values in three environments and best linear unbiased prediction (BLUP) values, as a result, a total of 127, 56, 160, and 130 significant quantitative trait nucleotides (QTNs) were identified by mrMLM, FASTmrEMMA, ISIS EM-BLASSO, and pLARmEB, respectively. Of these QTNs, 63 QTNs were commonly detected, including 15 across multiple environments and 58 across multiple methods. Allele distribution analysis showed that the proportion of superior alleles for 36 QTNs was <50% in 31 elite inbred lines. Meanwhile, these superior alleles had obviously additive effect on the regenerative capacity. This indicates that the regenerative capacity-related traits can be improved by proper integration of the superior alleles using marker-assisted selection. Moreover, a total of 40 candidate genes were found based on these common QTNs. Some annotated genes were previously reported to relate with auxin transport, cell fate, seed germination, or embryo development, especially, GRMZM2G108933 (WOX2) was found to promote maize transgenic embryonic callus regeneration. These identified candidate genes will contribute to a further understanding of the genetic foundation of maize embryonic callus regeneration.


Scientific Reports | 2017

Metabolomic and Proteomic Analysis of Maize Embryonic Callus induced from immature embryo

Fei Ge; Hongmei Hu; Xing Huang; Yanling Zhang; Yanli Wang; Zhaoling Li; Chaoying Zou; Huanwei Peng; Lujiang Li; Shibin Gao; Guangtang Pan; Yaou Shen

The low ratio of embryonic callus (EC) induction has inhibited the rapid development of maize genetic engineering. Still, little is known to explain the genotype-dependence of EC induction. Here, we performed a large-scale, quantitative analysis of the maize EC metabolome and proteome at three typical induction stages in two inbred lines with a range of EC induction capabilities. Comparison of the metabolomes and proteomes suggests that the differential molecular responses begin at an early stage of development and continue throughout the process of EC formation. The two inbred lines show different responses under various conditions, such as metal ion binding, cell enlargement, stem cell formation, meristematic activity maintenance, somatic embryogenesis, cell wall synthesis, and hormone signal transduction. Furthermore, the differences in hormone (auxin, cytokinin, gibberellin, salicylic acid, jasmonic acid, brassinosteroid and ethylene) synthesis and transduction ability could partially explain the higher EC induction ratio in the inbred line 18-599R. During EC formation, repression of the “histone deacetylase 2 and ERF transcription factors” complex in 18-599R activated the expression of downstream genes, which further promoted EC induction. Together, our data provide new insights into the molecular regulatory mechanism responsible for efficient EC induction in maize.


Frontiers in Plant Science | 2018

Multi-Locus Genome-Wide Association Study Reveals the Genetic Architecture of Stalk Lodging Resistance-Related Traits in Maize

Yanling Zhang; Peng Liu; Xiaoxiang Zhang; Qi Zheng; Min Chen; Fei Ge; Zhaoling Li; Wenting Sun; Zhongrong Guan; Tianhu Liang; Yan Zheng; Xiaolong Tan; Chaoying Zou; Huanwei Peng; Guangtang Pan; Yaou Shen

Stalk lodging resistance, which is mainly measured by stem diameter (SD), stalk bending strength (SBS), and rind penetrometer resistance (RPR) in maize, seriously affects the yield and quality of maize (Zea mays L.). To dissect its genetic architecture, in this study multi-locus genome-wide association studies for stalk lodging resistance-related traits were conducted in a population of 257 inbred lines, with tropical, subtropical, and temperate backgrounds, genotyped with 48,193 high-quality single nucleotide polymorphisms. The analyses of phenotypic variations for the above traits in three environments showed high broad-sense heritability (0.679, 0.720, and 0.854, respectively). In total, 423 significant Quantitative Trait Nucleotides (QTNs) were identified by mrMLM, FASTmrEMMA, ISIS EM-BLASSO, and pLARmEB methods to be associated with the above traits. Among these QTNs, 29, 34, and 48 were commonly detected by multiple methods or across multiple environments to be related to SD, SBS, and RPR, respectively. The superior allele analyses in 30 elite lines showed that only eight lines contained more than 50% of the superior alleles, indicating that stalk lodging resistance can be improved by the integration of more superior alleles. Among sixty-three candidate genes of the consistently expressed QTNs, GRMZM5G856734 and GRMZM2G116885, encoding membrane steroid-binding protein 1 and cyclin-dependent kinase inhibitor 1, respectively, possibly inhibit cell elongation and division, which regulates lodging resistance. Our results provide the further understanding of the genetic foundation of maize lodging resistance.


Genes | 2017

Transcription Factors Responding to Pb Stress in Maize

Yanling Zhang; Fei Ge; Fengxia Hou; Wenting Sun; Qi Zheng; Xiaoxiang Zhang; Langlang Ma; Jun Fu; Xiujing He; Huanwei Peng; Guangtang Pan; Yaou Shen

Pb can damage the physiological function of human organs by entering the human body via food-chain enrichment. Revealing the mechanisms of maize tolerance to Pb is critical for preventing this. In this study, a Pb-tolerant maize inbred line, 178, was used to analyse transcription factors (TFs) expressed under Pb stress based on RNA sequencing data. A total of 464 genes expressed in control check (CK) or Pb treatment samples were annotated as TFs. Among them, 262 differentially expressed transcription factors (DETs) were identified that responded to Pb treatment. Furthermore, the DETs were classified into 4 classes according to their expression patterns, and 17, 12 and 2 DETs were significantly annotated to plant hormone signal transduction, basal transcription factors and base excision repair, respectively. Seventeen DETs were found to participate in the plant hormone signal transduction pathway, where basic leucine zippers (bZIPs) were the most significantly enriched TFs, with 12 members involved. We further obtained 5 Arabidopsis transfer DNA (T-DNA) mutants for 6 of the maize bZIPs, among which the mutants atbzip20 and atbzip47, representing ZmbZIP54 and ZmbZIP107, showed obviously inhibited growth of roots and above-ground parts, compared with wild type. Five highly Pb-tolerant and 5 highly Pb-sensitive in maize lines were subjected to DNA polymorphism and expression level analysis of ZmbZIP54 and ZmbZIP107. The results suggested that differences in bZIPs expression partially accounted for the differences in Pb-tolerance among the maize lines. Our results contribute to the understanding of the molecular regulation mechanisms of TFs in maize under Pb stress.


BMC Plant Biology | 2017

Integrative analysis of DNA methylation, mRNAs, and small RNAs during maize embryo dedifferentiation

Hongjun Liu; Langlang Ma; Xuerong Yang; Lin Zhang; Xing Zeng; Shupeng Xie; Huanwei Peng; Shibin Gao; Haijian Lin; Guangtang Pan; Yongrui Wu; Yaou Shen

BackgroundMaize (Zea mays) is an important model crop for transgenic studies. However, genetic transformation of maize requires embryonic calli derived from immature embryo, and the impact of utilizing tissue culture methods on the maize epigenome is poorly understood. Here, we generated whole-genome MeDIP-seq data examining DNA methylation in dedifferentiated and normal immature maize embryos.ResultsWe observed that most of the dedifferentiated embryos exhibited a methylation increase compared to normal embryos. Increased methylation at promoters was associated with down-regulated protein-coding gene expression; however, the correlation was not strong. Analysis of the callus and immature embryos indicated that the methylation increase was induced during induction of embryonic callus, suggesting phenotypic consequences may be caused by perturbations in genomic DNA methylation levels. The correlation between the 21-24nt small RNAs and DNA methylation regions were investigated but only a statistically significant correlation for 24nt small RNAs was observed.ConclusionsThese data extend the significance of epigenetic changes during maize embryo callus formation, and the methylation changes might explain some of the observed embryonic callus variation in callus formation.


PLOS ONE | 2017

Endogenous small interfering RNAs associated with maize embryonic callus formation

Fei Ge; Xing Huang; Hongmei Hu; Yanling Zhang; Zhaoling Li; Chaoying Zou; Huanwei Peng; Lujiang Li; Shibin Gao; Guangtang Pan; Yaou Shen

The induction efficiency of maize embryonic callus is highly dependent on the genotype, and only a few lines possess a high capacity for callus formation. Although certain genes and pathways have been reported to contribute to the regulation of callus induction, to the best of our knowledge, the functions of the small interfering RNAs (siRNAs) involved in this process remain unknown. In this study, we identified 861 differentially expressed siRNAs and 576 target genes in the callus induction process. These target genes were classified into 3 clusters, and their functions involve controlling metalloexopeptidase activity, catalase activity, transcription regulation, and O-methyltransferase activity. In addition, certain genes related to auxin transport and stem cell or meristem development (e.g., PLT5-like, ARF15, SAUR-like, FAS1-like, Fea3, SCL5, and Zmwox2A) were regulated by the differentially expressed siRNAs. Moreover, zma-siR004119-2 directly cleaves the 5’ UTR of Homeobox-transcription factor 25, which further leads to the down-regulation of its expression. Twelve 24-nt-siRNAs led to the hyper-methylation of GRMZM2G013465, which further decreases its expression. These results suggest that differentially expressed siRNAs regulate callus formation by controlling the expression of their target genes.

Collaboration


Dive into the Huanwei Peng's collaboration.

Top Co-Authors

Avatar

Guangtang Pan

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yaou Shen

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yanling Zhang

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Haijian Lin

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Chaoying Zou

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Fei Ge

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Langlang Ma

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shibin Gao

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhiming Zhang

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Maojun Zhao

Sichuan Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge