Huanyang Chen
Xiamen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Huanyang Chen.
Nature Materials | 2010
Huanyang Chen; Che Ting Chan; Ping Sheng
Underpinned by the advent of metamaterials, transformation optics offers great versatility for controlling electromagnetic waves to create materials with specially designed properties. Here we review the potential of transformation optics to create functionalities in which the optical properties can be designed almost at will. This approach can be used to engineer various optical illusion effects, such as the invisibility cloak.
Applied Physics Letters | 2007
Huanyang Chen; Che Ting Chan
A scheme to achieve two dimensional (2D) acoustic cloaking is proposed by Cummer and Schurig [New J. Phys. 9, 45 (2007)] by mapping the acoustic equations to Maxwell’s equations of one polarization in the 2D geometry. We find that the acoustic equation can be mapped to the direct current conductivity equation in three dimensions, which then allows the design of three-dimensional acoustic cloaking using the coordinate transformation scheme. The perfect cloaking effect is confirmed by solving for the scattering problem using the spherical-Bessel function series expansion method.
Physical Review Letters | 2009
Yun Lai; Jack Ng; Huanyang Chen; De Zhuan Han; Jun Jun Xiao; Zhao-Qing Zhang; Che Ting Chan
We propose to use transformation optics to generate a general illusion such that an arbitrary object appears to be like some other object of our choice. This is achieved by using a remote device that can transform the scattered light outside a virtual boundary into that of the object chosen for the illusion, irrespective of the profile and direction of the incident light. This type of illusion device also enables people to see through walls. Our work extends the concept of cloaking as a special form of illusion to the wider realm of illusion optics.
Applied Physics Letters | 2007
Huanyang Chen; Che Ting Chan
The authors suggest a way to manipulate electromagnetic waves by introducing a rotation mapping of coordinates that can be realized by a specific transformation of the permittivity and permeability of a shell surrounding an enclosed domain. Inside the enclosed domain, the information from the outside will appear as if it is coming from a different angle. Numerical simulations were performed to illustrate these properties.
Nature Communications | 2014
Yangbo Xie; Wenqi Wang; Huanyang Chen; Adam Konneker; Bogdan Ioan Popa; Steven A. Cummer
Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snells law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications.
Physical Review B | 2007
Huanyang Chen; Zixian Liang; Peijun Yao; Xunya Jiang; Hongru Ma; Che Ting Chan
Using the idea of transformation medium, a cloak can be designed to make a domain invisible for one target frequency. In this article, we examine the possibility to extend the bandwidth of such a cloak. We obtained a constraint of the band width, which is summarized as a simple inequality that states that limits the bandwidth of operation. The constraint originates from causality requirements. We suggest a simple strategy that can get around the constraint.
Optics Letters | 2009
Jack Ng; Huanyang Chen; Che Ting Chan
Using transformation optics a frequency-selective superabsorber can be constructed that consists of an absorbing core material coated with a shell of isotropic double negative metamaterial. For a fixed volume its absorption cross section can be made arbitrarily large at one frequency. The double-negative shell serves to amplify the evanescent tail of the high-order cylindrical waves, which induces strong scattering and absorption. Our conclusion is supported by both analytical Mie theory and numerical finite-element simulation. Interesting applications of such a device are discussed.Using the idea of transformation optics, we propose a metamaterial device that serves as a frequency-selective super-absorber, which consists of an absorbing core material coated with a shell of isotropic double negative metamaterial. For a fixed volume, the absorption cross section of the super-absorber can be made arbitrarily large at one frequency. The double negative shell serves to amplify the evanescent tail of the high order incident cylindrical waves, which induces strong scattering and absorption. Our conclusion is supported by both analytical Mie theory and numerical finite element simulation. Interesting applications of such a device are discussed.
Applied Physics Letters | 2011
Yadong Xu; Huanyang Chen
In this work, we investigate wave transmission through an epsilon-near-zero metamaterial waveguide embedded with defects. We show that by adjusting the geometric sizes and material properties of the defects, total reflection, and even transmission can be obtained, despite the impedance mismatch of epsilon-near-zero material with free space. Our work can greatly simplify the design of zero-index material waveguide applications by removing the dependence on permeability.
Applied Physics Letters | 2012
Jie Luo; Ping Xu; Huanyang Chen; Bo Hou; Lei Gao; Yun Lai
We study metamaterials with an anisotropic permittivity tensor in which one component is near zero. We find that such an anisotropic metamaterial can be used to control wave propagation and construct almost perfect bending waveguides with a high transmission rate (>95%). This interesting effect originates in the power flow redistribution by the surface waves on the input and output interfaces, which smoothly matches with the propagating modes inside the metamaterial waveguide. We also find that waves in such anisotropic epsilon-near-zero materials can be reflected by small-sized perfect magnetic conductor defects. Numerical calculations have been performed to confirm the above effects.
Physical Review B | 2008
Huanyang Chen; Che Ting Chan
We show that the optical properties of an oblique layered system with two kinds of isotropic materials can be described using the concept of transformation media as long as the thickness of the layers is much smaller than the wavelength. Once the connection with transformation media is established, we then show that oblique layered system can serve as a universal element to build a variety of interesting functional optical components such as wave splitters, wave combiners, one-dimensional cloaking devices and reflectionless field rotators.