Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huaqiu Zhang is active.

Publication


Featured researches published by Huaqiu Zhang.


International Journal of Oncology | 2013

A role for LRIG1 in the regulation of malignant glioma aggressiveness

Feng Mao; Baofeng Wang; Qungen Xiao; Guifa Xi; Wei Sun; Huaqiu Zhang; Fei Ye; Feng Wan; Dongsheng Guo; Ting Lei; Xiaoping Chen

The molecular mechanisms that drive the development and aggressive progression of malignant astrocytic tumors remain obscure. Recently, in the search for endogenous negative regulators of EGF receptor, LRIG1 was cloned and characterized as a putative tumor suppressor gene often downregulated in various human tumors, including astrocytic tumors. Although several studies have implicated the function of LRIG1 in the inhibition of tumorigenesis, its precise role and potential underlying mechanisms remain obscure. Therefore, we generated a full-length expression vector to overexpress LRIG1 in the U251 malignant glioma cell line. Introduction of exogenous LRIG1 into glioma cells inhibited cell proliferation manifested by MTT and soft agar clone assay in vitro and subcutaneously tumor xenografts. On the other hand, LRIG1 overexpression inhibited glioma growth by significantly changing the expression pattern of cyclins, resulting in delayed cell cycle. Employing transwell invasion and wound scratch assay and gelatin zymography, LRIG1 inhibited U-251 MG cell invasion and migration by attenuating MMP2 and MMP9 production. Under ligand-stimulated conditions, p-ERK levels did not change, whereas p-AKT levels were inhibited in cells with LRIG1 upregulation, indicating that LRIG1 exerts more inhibiting effects on the PI3K/AKT pathway. Our findings suggest that LRIG1 restricted glioma aggressiveness by inhibiting cell proliferation, migration and invasion. Restoration of LRIG1 to glioma cells could offer a novel therapeutic strategy.


Clinical Neurology and Neurosurgery | 2015

Intraoperative neuromonitoring for removal of large vestibular schwannoma: Facial nerve outcome and predictive factors

Shengwen Liu; Wei Jiang; Huaqiu Zhang; Xiaopeng Li; Xueyan Wan; Bosomah Emmanuel; Kai Shu; Jingcao Chen; Jian Chen; Ting Lei

BACKGROUND Preservation of facial nerve (FN) function is one of the major goals for resection of large vestibular schwannoma (VS) (≥ 30 mm). Little is known about the FN outcome and its predictive factors due to limited data. OBJECTIVE To explore the predictive factors affecting FN outcome following resection of large VS. METHODS 106 Large VS patients underwent surgical resection from 2010 to 2012 via intraoperative neuromonitoring for FN preservation approach. Postoperative FN function evaluation was conducted at the time points of 3-7th day, 3rd month and at the end of the 2nd year. Correlation between tumor size, intraoperative parameters and FN function were examined. RESULTS The ratios of total and subtotal resection were 82.1% and 14.2%, respectively. Acceptable FN function was achieved in 78% patients. Patients with good FN function showed much smaller (P < 0.01) VS size than those of poor-FN function patients at 3-7th day, 3rd month and 2nd year. There was a significant correlation between facial motor evoked potential (FMEP) ratios and postoperative FN function at 3-7th day (r = -0.709, P < 0.001) 3rd month (r = -0.709, P< 0.001) and 2nd year (r = -0.750, P < 0.001). Maximal response amplitude (MRA) ratio was a supplementary indicator for train time in predicting both immediate and long-term FN function in patients with large VS. CONCLUSION Indicative factors of both immediate and long-term postoperative FN function in large VSs include tumor size, intraoperative train time, start to final FMEP ratios and proximal to distal MRA ratios.


Brain Research | 2014

DCPIB, a potent volume-regulated anion channel antagonist, attenuates microglia-mediated inflammatory response and neuronal injury following focal cerebral ischemia.

Qingdong Han; Shengwen Liu; Zhengwei Li; Feng Hu; Qiang Zhang; Min Zhou; Jingcao Chen; Ting Lei; Huaqiu Zhang

Accumulating evidence indicates that extensive microglia activation-mediated local inflammation contributes to neuronal injury in cerebral ischemia. We have previously shown that 4-(2-butyl-6, 7-dichloro-2-cyclopentyl-indan-1-on-5-yl) oxobutyric acid (DCPIB), a potent volume-regulated anion channel (VRAC) inhibitor, suppresses pathological glutamate release and excitatory neurotoxicity in reversible middle cerebral artery occlusion (rMCAO) model in vivo. In the present study, we sought to determine whether DCPIB also attenuates microglia activation that could contribute to neuronal injury in the cerebral ischemia/reperfusion pathology. We show that oxygen-glucose deprivation (OGD) induced microglia proliferation, migration, and secretion of cytokines and all these pathological changes were effectively inhibited by DCPIB in vitro. In the microglia/neuron co-cultures, OGD induced neuronal damage was reduced markedly in the presence of DCPIB. In rat rMCAO animal model, DCPIB significantly attenuated microglia activation and neuronal death. Activation of mitogen-activated protein kinase (MAPK) signaling pathway is known to be a critical signaling pathway for microglia activation. We further explored a potential involvement of DCPIB in this pathway by western blot analysis. Under the conditions that MAPK pathway was activated either by lipopolysaccharides (LPS) or OGD, the levels of phosphorylated ERK1/2, JNK and p38 were reduced significantly in the presence of DCPIB. Altogether, our study demonstrated that DCPIB inhibits microglia activation potently under ischemic conditions both in vitro and in vivo. The DCPIB effect is likely attributable to both direct inhibition VRAC and indirect inhibition of MAPK pathway in microglia that are beneficial for the survival of neurons in cerebral ischemic conditions.


Oncology Research | 2011

Overexpression of LIMK1 promotes migration ability of multidrug-resistant osteosarcoma cells.

Huaqiu Zhang; Yongsheng Wang; Xing F; Jinghui Wang; Wang H; Yang Yang; Gao Z

Multidrug resistance (MDR) to chemotherapy is a major obstacle in the treatment of cancer and the resistance process is multifactorial. Studies on multidrug resistance mechanisms relied on the availability of cancer multidrug resistance cell lines that have been established. In this study we successfully established a multidrug resistance cell line MG63/VCR derived from human osteosarcoma cell line MG63 based on the induction by vincristine. MG63/VCR cells exhibited high resistance to vincristine and other anticancer drugs, accompanied by upregulated expression of MDR-associated genes MDR1, MRP1, and Bcl-2. Notably, we found that MG63/VCR cells exhibited higher migration ability compared to parental MG63 cells. Moreover, we demonstrated that LIMK1, a key regulator of actin cytoskeleton, was overexpressed at both mRNA and protein levels in MG63/VCR cells and the higher LIMK1 protein level was correlated with higher level of phosphorylated cofilin. In addition, knockdown of LIMK1 abolished the higher migration ability of MG63/ VCR cells. These results suggest that LIMK1 overexpression contributes to the invasion and metastasis of drug-resistant osteosarcoma and reveal LIMK as a novel therapeutic target for drug resistant osteosarcoma.


Journal of Neuroimmunology | 2017

TLR4 signal ablation attenuated neurological deficits by regulating microglial M1/M2 phenotype after traumatic brain injury in mice

Xiaolong Yao; Shengwen Liu; Wei Ding; Pengjie Yue; Qian Jiang; Min Zhao; Feng Hu; Huaqiu Zhang

Traumatic brain injury (TBI) initiates inflammatory responses that result in an enduring cascade of secondary neuronal loss and behavioural impairment. Toll-like receptor 4 (TLR4), predominantly expressed by microglia, recognizes damage-associated molecular patterns (DAMPs) and regulates inflammatory processes. Interestingly, the switch of microglial M1/M2 phenotypes after TBI is highly important regarding damage and restoration of neurological function. Therefore, we investigated the role and mechanisms of the TLR4 signalling pathway in regulating microglial M1/M2 phenotypes. Using a controlled cortical impact (CCI) model, we found that TLR4 knockout (KO) mice exhibited decreased infarct volumes and improved outcomes in behavioural tests. In addition, mice lacking TLR4 had higher expression of M2 phenotype biomarkers but lower expression of M1 phenotype biomarkers. Compared with microglia derived from wild-type (WT) mice, increased expression of M2 phenotype biomarkers and decreased expression of M1 phenotype biomarkers were also noted in primary cultures of microglia from TLR4 KO mice. In TLR4 KO mice, the expression levels of downstream signalling molecules of TLR4, such as active Rac-1 and phospho-AKT, were higher, while MyD88 and phospho-NF-κB p65 expression levels were lower than in WT mice. Our results demonstrate that the absence of TLR4 induces microglial polarization toward the M2 phenotype and promotes microglial migration and, in turn, alleviates the development of neuroinflammation, which indicates potential neuroprotective effects in the TBI mouse model. Furthermore, up-regulation of IL-4 expression in TLR4 KO mice could contribute to anti-inflammatory functions and promote microglial polarization toward the M2 phenotype, which might be mediated by active Rac-1 expression. Taken together, TLR4 deficiency contributes to regulating microglia to switch to the M2 phenotype, which ameliorates neurological impairment after TBI.


Journal of Huazhong University of Science and Technology-medical Sciences | 2011

Association of expression of Leucine-rich repeats and immunoglobulin-like domains 2 gene with invasiveness of pituitary adenoma

Huaqiu Zhang; Qin Yan; Shutian Xu; Yibo Ou; Fei Ye; Baofeng Wang; Ting Lei; Dongsheng Guo

The Leucine-rich repeats and immunoglobulin-like domains-2 (LRIG2) gene expression in pituitary adenoma and its correlation with tumor invasiveness were studied. The expression of LRIG2 mRNA and protein in human pituitary adenoma obtained surgically was detected by RT-PCR (39 cases) and immunohistochemical staining (30 cases). It was found that LRIG2 was mostly localized at the nucleus of the pituitary adenoma cells. Its expression was significantly higher in the invasive cases than in the non-invasive cases. LRIG2 protein was positive in 14 cases out of 21 cases of invasive adenoma, but only 2 cases were positive in 9 cases of non-invasive adenoma. The positive expression rate of LRIG2 mRNA was 91.3% in invasive cases (total 23 cases) and 62.5% in non-invasive cases (total 16 cases), respectively. LRIG2 gene is overexpressed in invasive pituitary adenoma. It may play an important role in pituitary adenoma invasiveness and further studies are necessary to elucidate the mechanism under this phenomenon.SummaryThe Leucine-rich repeats and immunoglobulin-like domains-2 (LRIG2) gene expression in pituitary adenoma and its correlation with tumor invasiveness were studied. The expression of LRIG2 mRNA and protein in human pituitary adenoma obtained surgically was detected by RT-PCR (39 cases) and immunohistochemical staining (30 cases). It was found that LRIG2 was mostly localized at the nucleus of the pituitary adenoma cells. Its expression was significantly higher in the invasive cases than in the non-invasive cases. LRIG2 protein was positive in 14 cases out of 21 cases of invasive adenoma, but only 2 cases were positive in 9 cases of non-invasive adenoma. The positive expression rate of LRIG2 mRNA was 91.3% in invasive cases (total 23 cases) and 62.5% in non-invasive cases (total 16 cases), respectively. LRIG2 gene is overexpressed in invasive pituitary adenoma. It may play an important role in pituitary adenoma invasiveness and further studies are necessary to elucidate the mechanism under this phenomenon.


Oncology Research | 2012

LRIG1 enhances cisplatin sensitivity of glioma cell lines.

Xiongwei Wang; Qungen Xiao; Xihong Xing; Chunlei Tian; Huaqiu Zhang; Fei Ye; Feng Wan; Baofeng Wang; Dongsheng Guo; Ting Lei

LRIG family shares similar structures that include a signal peptide, an extracellular region consisting of a leucine-rich repeat domain and three immunoglobulin-like domains, a transmembrane domain, and a cytoplasmic tail. After activation of EGFR, the extracellular LRR domain and immunoglobulin-like domains of LRIG1 can bind to the extracellular parts of EGFR, resulting in recruitment of c-Cbl to the cytoplasmic domains, and induction of EGFR degradation. This study investigated the effects of overexpression of leucine-rich repeats and LRIG1 on cisplatin (CDDP) sensitivity in the glioma cell line U251 and explored the possible mechanisms mediating this effect. We found that CDDP could inhibit the growth of U251 cell line and induced activation of the EGFR. Overexpression of LRIG1 increased the inhibitory effect of CDDP on the U251 cell line via the inhibition of proliferation and induction of apoptosis. The mechanisms underlying the effect of the combined treatment of LRIG1 and CDDP could be that LRIG1 blocked CDDP-induced EGFR activation and regulated the apoptosis proteins. These findings suggest that upregulation of LRIG1 expression enhances the CDDP sensitivity in the glioma cell line U251.


Journal of Huazhong University of Science and Technology-medical Sciences | 2012

Effects of RNAi-mediated gene silencing of LRIG1 on proliferation and invasion of glioma cells

Feng Mao; Baofeng Wang; Guifa Xi; Wei Sun; Huaqiu Zhang; Fei Ye; Dongsheng Guo; Ting Lei

SummaryThe effects of RNAi-mediated gene silencing of LRlG1 on proliferation and invasion of the human glioma cell line U251-MG and the possible mechanisms were explored in this study. The plasmids pGenesil2-LRIG1-shRNA1 and pGenesil2-LRIG1-shRNA2 were transfected into U251-MG glioma cells respectively by using Lipofectamine 2000 and the transfected cells in which the LRIG1 expression was stably suppressed were selected by G418. The cells transfected with negative shRNA served as control. The expression levels of LRIG1 mRNA and protein were measured by qRT-PCR and Western blotting, respectively. The cell cycle was analyzed by flow cytometry. The results showed that LRIG1 mRNA expression was reduced by 70% and 58% and LRIG1 protein expression by 58% and 26% in U251-MG cells transfected with pGenesil2-LRIG1-shRNAl and pGenesil2-LRIG1-shRNA2 relative to the negative shRNA-transfected U251-MG cells. The proliferative capacity of the LRIG1 specific siRNA-transfected cells was stronger than that of control cells. Cell cycle analysis showed that silencing LRIG1 significantly increased the percentage of S phase cells and the proliferation index (P<0.01). Moreover, silencing LRIG1 could promote the invasion of U251-MG cells (P<0.05). These findings suggested that LRIG1-targeting siRNA can exert a dramatically inhibitory effect on RNA transcription and protein expression of LRIG1, and LRIG1 down-regulation could promote the proliferation of U251-MG cells, arrest U251-MG cells in S phase, and enhance the invasion of U251-MG cells.The effects of RNAi-mediated gene silencing of LRlG1 on proliferation and invasion of the human glioma cell line U251-MG and the possible mechanisms were explored in this study. The plasmids pGenesil2-LRIG1-shRNA1 and pGenesil2-LRIG1-shRNA2 were transfected into U251-MG glioma cells respectively by using Lipofectamine 2000 and the transfected cells in which the LRIG1 expression was stably suppressed were selected by G418. The cells transfected with negative shRNA served as control. The expression levels of LRIG1 mRNA and protein were measured by qRT-PCR and Western blotting, respectively. The cell cycle was analyzed by flow cytometry. The results showed that LRIG1 mRNA expression was reduced by 70% and 58% and LRIG1 protein expression by 58% and 26% in U251-MG cells transfected with pGenesil2-LRIG1-shRNAl and pGenesil2-LRIG1-shRNA2 relative to the negative shRNA-transfected U251-MG cells. The proliferative capacity of the LRIG1 specific siRNA-transfected cells was stronger than that of control cells. Cell cycle analysis showed that silencing LRIG1 significantly increased the percentage of S phase cells and the proliferation index (P<0.01). Moreover, silencing LRIG1 could promote the invasion of U251-MG cells (P<0.05). These findings suggested that LRIG1-targeting siRNA can exert a dramatically inhibitory effect on RNA transcription and protein expression of LRIG1, and LRIG1 down-regulation could promote the proliferation of U251-MG cells, arrest U251-MG cells in S phase, and enhance the invasion of U251-MG cells.


Journal of Huazhong University of Science and Technology-medical Sciences | 2011

Effect of over-expressed LRIG3 on cell cycle and survival of glioma cells

Hongkuan Yang; Feng Mao; Huaqiu Zhang; Baofeng Wang; Feng Wan; Dongsheng Guo; Ting Lei

This study examined the effects of over-expression of leucine-rich repeats and immunoglobulin-like domains 3 (LRIG3) on the cell cycle and survival of human glioma cell line U87 and U251 and explored the possible mechanisms. The LRIG3 gene was transduced into U87 and U251 cells respectively by using lentivirus and the transduced cells were selected by puromycin. The changes in LRIG3 mRNA and protein levels were measured by RT-PCR and Western blotting. The apoptosis rate was detected by Annexin V-FITC/PI double labeling and the cell cycle was flow cytometrically analyzed. Compared with control cells, LRIG3 mRNA expression in U251 and U87 cells transduced with pLVX-DsRed-LRIG3-Monomer-N1 were increased by 77.6% and 129.7%, and LRIG3 protein expression was raised by 141.3% and 322.7%, respectively. Cell cycle analysis showed that LRIG3 over-expression increased the percentage of cells at G0/G1 phase (P<0.01). Over-expressed LRIG3 could significantly promote the apoptosis of U87 and U251 cells (P<0.05). These findings suggest that the over-expression of LRIG3 could arrest the cell cycle in G0/G1 phase, and promote apoptosis of U87 and U251 cells.SummaryThis study examined the effects of over-expression of leucine-rich repeats and immunoglobulin-like domains 3 (LRIG3) on the cell cycle and survival of human glioma cell line U87 and U251 and explored the possible mechanisms. The LRIG3 gene was transduced into U87 and U251 cells respectively by using lentivirus and the transduced cells were selected by puromycin. The changes in LRIG3 mRNA and protein levels were measured by RT-PCR and Western blotting. The apoptosis rate was detected by Annexin V-FITC/PI double labeling and the cell cycle was flow cytometrically analyzed. Compared with control cells, LRIG3 mRNA expression in U251 and U87 cells transduced with pLVX-DsRed-LRIG3-Monomer-N1 were increased by 77.6% and 129.7%, and LRIG3 protein expression was raised by 141.3% and 322.7%, respectively. Cell cycle analysis showed that LRIG3 over-expression increased the percentage of cells at G0/G1 phase (P<0.01). Over-expressed LRIG3 could significantly promote the apoptosis of U87 and U251 cells (P<0.05). These findings suggest that the over-expression of LRIG3 could arrest the cell cycle in G0/G1 phase, and promote apoptosis of U87 and U251 cells.


Brazilian Journal of Medical and Biological Research | 2015

Changes in circulating endothelial progenitor cells predict responses of multiple myeloma patients to treatment with bortezomib and dexamethasone

L. Wang; F. Du; Huaqiu Zhang; Wuxing Zhang; Hao Wang

Four cycles of chemotherapy are required to assess responses of multiple myeloma (MM) patients. We investigated whether circulating endothelial progenitor cells (cEPCs) could be a biomarker for predicting patient response in the first cycle of chemotherapy with bortezomib and dexamethasone, so patients might avoid ineffective and costly treatments and reduce exposure to unwanted side effects. We measured cEPCs and stromal cell-derived factor-1α (SDF-1α) in 46 MM patients in the first cycle of treatment with bortezomib and dexamethasone, and investigated clinical relevance based on patient response after four 21-day cycles. The mononuclear cell fraction was analyzed for cEPC by FACS analysis, and SDF-1α was analyzed by ELISA. The study population was divided into 3 groups according to the response to chemotherapy: good responders (n=16), common responders (n=12), and non-responders (n=18). There were no significant differences among these groups at baseline day 1 (P>0.05). cEPC levels decreased slightly at day 21 (8.2±3.3 cEPCs/μL) vs day 1 (8.4±2.9 cEPCs/μL) in good responders (P>0.05). In contrast, cEPC levels increased significantly in the other two groups (P<0.05). SDF-1α changes were closely related to changes in cEPCs. These findings indicate that change in cEPCs at day 21 in the first cycle might be considered a noninvasive biomarker for predicting a later response, and extent of change could help decide whether to continue this costly chemotherapy. cEPCs and the SDF-1α/CXCR4 axis are potential therapeutic targets for improved response and outcomes in MM patients.

Collaboration


Dive into the Huaqiu Zhang's collaboration.

Top Co-Authors

Avatar

Ting Lei

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Baofeng Wang

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Dongsheng Guo

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Fei Ye

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Feng Mao

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hao Wang

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jincao Chen

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kai Shu

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Wei Sun

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yu Wang

Huazhong University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge