Huarong Yu
Harbin Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Huarong Yu.
Water Research | 2012
Fangshu Qu; Heng Liang; Zhaozhi Wang; Hui Wang; Huarong Yu; Guibai Li
This paper focused on the membrane fouling caused by extracellular organic matters (EOM) which was extracted from lab-cultured Microcystis aeruginosa in stationary phase. The characteristics of EOM such as molecular weight distribution, hydrophobicity and fluorescence were measured. It was found that high molecular weight (MW) and hydrophilic organics accounted for the major parts of algal EOM which was comprised of protein-like, polysaccharide-like and humic-like substances. Ultrafiltration (UF) experiments were carried out in a stirring cell and hydrophobic polyethersulfone (PES) membranes which carried negative charge were used. Prefiltration, calcium addition and XAD fractionation were employed to change the interfacial characteristics of EOM. Then the effects of these interfacial characteristics on flux decline, reversibility and mass balance of organics were compared. Algal EOM proved to cause serious membrane fouling during UF. The fraction of algal EOM between 0.45 μm and 100 kDa contributed a significant portion of the fouling. Hydrophobic organics in EOM tended to adhere to membrane surface causing irreversible fouling, while the cake layer formed by hydrophilic organics caused greater resistance to water flow due to hydrophilic interaction such as hydrogen bond and led to faster flux decline during UF. The results also indicated that the algal EOM was negatively charged and the electrostatic repulsion could prevent organics from adhering to membrane surface. In term of fouling mechanisms, cake layer formation, hydrophobic adhesion and pore plugging were the main mechanisms for membrane fouling caused by algal EOM.
Water Research | 2012
Fangshu Qu; Heng Liang; Junguo He; Jun Ma; Zhaozhi Wang; Huarong Yu; Guibai Li
Extracellular organic matter (EOM) of cyanobacteria was classified into the dissolved EOM (dEOM) which was released into culture solution and the bound EOM (bEOM) which surrounded the cells. The dEOM and bEOM extracted from Microcystis aeruginosa in stationary phase were used to study their characteristic differences and then their impacts on ultrafiltration (UF) membrane fouling. Component analyses showed that dEOM was comprised of proteins, polysaccharides and humic-like substances, while that bEOM contained only proteins and polysaccharides. Additionally, polysaccharides dominated in dEOM with a polysaccharide/DOC ratio of 1.11 mg mg(-1), while proteins were the primary components of bEOM with a protein/DOC ratio of 1.08 mg mg(-1). Results of size fractionation and XAD resin fractionation revealed that bEOM was mainly distributed in the high-MW and hydrophobic fractions, while that dEOM was more hydrophilic. Result of UF experiments indicated that dEOM which had a higher organic content and stronger hydrophilicity caused more severe flux decline and reversible fouling, and that bEOM led to slower flux decline but more irreversible fouling due to less electrostatic repulsive and more hydrophobic adhesion. The impacts of these two kinds of EOM on the UF fouling caused by cyanobacterial cells were also investigated. It was found that both flux decline and irreversible membrane fouling caused by the cells were aggravated when cells were together with EOM, especially for bEOM which might increase the surface hydrophobicity of the cells.
Chemosphere | 2015
Huarong Yu; Fangshu Qu; Lianpeng Sun; Heng Liang; Zheng-shuang Han; Haiqing Chang; Senlin Shao; Guibai Li
Effluent organic matter (EfOM) originating from wastewater treatment plant (WWTP) is of significant concern, as it not only influences the discharge quality of WWTP but also exerts a significant effect on the efficiency of the downstream advanced treatment facilities. Soluble microbial products (SMP) is a major part of EfOM. In order to further understand the relationship between soluble microbial products (SMP) and EfOM, and in turn, to propose measures for EfOM control, the formation of SMP and EfOM in identical activated sludge sequencing batch reactors (SBR) with different feed water was investigated using fluorescence excitation and emission spectroscopy matrix coupled with parallel factor analysis (EEM-PARAFAC) as well as other organic matter quantification tools. Results showed that EfOM contained not only SMP but also a considerable amount of allochthonous organic matter that derived not merely from natural organic matter (NOM). Four components in EfOM/SMP were identified by EEM-PARAFAC. Tyrosine-like substances in EfOM (Component 3, λex/em=270/316 nm) were mainly originated from utilization associated products (UAP) of SMP. Tryptophan-like substances (Component 2, λex/em=280/336 nm) as well as fulvic-like and humic-like substances in EfOM (Component 1, λex/em=240(290)/392 nm and Component 4, λex/em=260(365)/444 nm) were majorly derived from the refractory substances introduced along with the influent, among which Component 2 was stemmed from sources other than NOM. As solid retention time (SRT) increased, Component 2 and polysaccharides in SMP/EfOM decreased, while Component 4 in SMP increased.
Bioresource Technology | 2016
Xin Yang; Guoren Xu; Huarong Yu; Zhao Zhang
Ferric activation was novelly used to produce sludge-based adsorbent (SBA) from biological sludge through pyrolysis, and the adsorbents were applied to remove tetracycline from aqueous solution. The pyrolysis temperature and mass ratio (activator/dried sludge) greatly influenced the surface area and pore characteristics of SBA. Ferric activation could promote the porous structure development of adsorbents, and the optimum preparation conditions were pyrolysis temperature 750°C and mass ratio (activator/dried sludge) 0.5. In batch experiments, ferric-activated SBA showed a higher adsorption capacity for tetracycline than non-activated SBA, because the enhanced mesoporous structure favored the diffusion of tetracycline into the pores, the iron oxides and oxygen-containing functional groups in the adsorbents captured tetracycline by surface complexation. The results indicate that ferric activation is an effective approach for preparing adsorbents from biological sludge to remove tetracycline, providing a potential option for waste resource recovery.
Scientific Reports | 2015
Huarong Yu; Heng Liang; Fangshu Qu; Zheng-shuang Han; Senlin Shao; Haiqing Chang; Guibai Li
Parallel factor (PARAFAC) analysis enables a quantitative analysis of excitation-emission matrix (EEM). The impact of a spectral variability stemmed from a diverse dataset on the representativeness of the PARAFAC model needs to be examined. In this study, samples from a river, effluent of a wastewater treatment plant, and algae secretion were collected and subjected to PARAFAC analysis. PARAFAC models of global dataset and individual datasets were compared. It was found that the peak shift derived from source diversity undermined the accuracy of the global model. The results imply that building a universal PARAFAC model that can be widely available for fitting new EEMs would be quite difficult, but fitting EEMs to existing PARAFAC model that belong to a similar environment would be more realistic. The accuracy of online monitoring strategy that monitors the fluorescence intensities at the peaks of PARAFAC components was examined by correlating the EEM data with the maximum fluorescence (Fmax) modeled by PARAFAC. For the individual datasets, remarkable correlations were obtained around the peak positions. However, an analysis of cocktail datasets implies that the involvement of foreign components that are spectrally similar to local components would undermine the online monitoring strategy.
Bioresource Technology | 2013
Zheng-shuang Han; Jiayu Tian; Heng Liang; Jun Ma; Huarong Yu; Kai Li; An Ding; Guibai Li
In order to quantify the activity of heterotrophic microorganism in membrane bioreactor (MBR) for drinking water treatment, biomass respiration potential (BRP) test and 2,3,5-triphenyl tetrazolium chloride-dehydrogenase activity (TTC-DHA) test were introduced and modified. A sludge concentration ratio of 5:1, incubation time of 2h, an incubation temperature that was close to the real operational temperature, and using a mixture of main AOC components as the substrate were adopted as the optimum parameters for determination of DHA in drinking water MBR. A remarkable consistency among BDOC removal, BRP and DHA for assessing biological performance in different MBRs was achieved. Moreover, a significant correlation between the BRP and DHA results of different MBRs was obtained. However, the TTC-DHA test was expected to be inaccurate for quantifying the biomass activity in membrane adsorption bioreactor (MABR), while the BRP test turned out to be still feasible in that case.
RSC Advances | 2016
Huizhi Hu; Junguo He; Jian Liu; Huarong Yu; Jian Tang; Jie Zhang
Quorum sensing (QS) signaling has been extensively studied in granules and single species populations. However, the knowledge regarding QS in biofilm formation on packing media has neither been experimentally explored nor theoretically addressed. We performed a long-term study to investigate the links between QS, organization and composition of complex microbial communities when biofilm developed on packing media. Three distinct phases were defined according to the weight of the biofilm and the removal rate of COD and ammonia nitrogen. Four kinds of N-acyl-homoserine-lactone (AHL) were found to be regularly and positively correlated with biofilm in growth stage (activation phase) (p < 0.01), while the correlation was not significant in other phases. Total AHL level was also closely related to the productions of extracellular polymeric substance (EPS), especially in polysaccharide. Sequence analysis results revealed that community structure changed with growth of biofilm, and top 34 most abundant community members had a significant correlation with AHLs production. Notably, biofilm and production of EPS, as well as community structure changed after dosing with nanomolar level of exogenous AHL in stable and mature biofilm, but this change was not a signal concentration-dependent manner. This study provides a foundation for investigation of QS effect on biofilm formation on packing media in many natural and engineered ecosystems, where it coordinates community behavior.
Biotechnology and Bioengineering | 2016
Huarong Yu; Heng Liang; Fangshu Qu; Junguo He; Guoren Xu; Huizhi Hu; Guibai Li
Bacterial quorum quenching (QQ) has been shown to be effective in controlling biofouling in membrane bioreactors (MBRs) for wastewater treatment. However, the encapsulation of a sufficient level of QQ bacteria is complicated and difficult. In plant research, gamma‐caprolactone (GCL), which is structurally similar to the quorum signal, N‐acyl homoserine lactone (AHL), was successfully used to specifically stimulate AHL‐degrading bacteria (biostimulation) in hydroponic systems to control blackleg and soft rot diseases in potato. In this study, the feasibility of enriching QQ bacteria from activated sludge by GCL was examined, and the effect of biostimulation on biofouling control in MBR treating domestic wastewater was investigated. The results showed that after enrichment with GCL, activated sludge could effectively degrade AHLs, and a QQ gene (qsdA) was augmented. The proposed biostimulation QQ strategy, by introducing and continuously dosing GCL, could significantly increase QQ activity, decrease AHL, control the secretion of extracellular polymeric substances (EPS), and thus, effectively control biofouling in an MBR. This biostimulation QQ strategy provides a more convenient option for biofouling control in MBR applications. Biotechnol. Bioeng. 2016;113: 2624–2632.
Bioresource Technology | 2016
Huizhi Hu; Junguo He; Jian Liu; Huarong Yu; Jie Zhang
This study verified the effect of N-acyl homoserine lactone (AHL) concentrations on mature biofilm systems. Three concentrations of an AHL mixture were used in the batch test. Introducing of 5nM AHLs significantly increased biofilm activity and increased sludge characteristics, which resulted in better pollutant removal performance, whereas exogenous 50nM and 500nM AHLs limited pollutant removal, especially COD and nitrogen removal. To further identify how exogenous signal molecular affects biofilm system nitrogen removal, analyzing of nitrifying bacteria through real-time polymerase chain reaction (RT-PCR) revealed that these additional signal molecules affect nitrifying to total bacteria ratio. In addition, the running state of the system was stable during 15days of operation without an AHL dose, which suggests that the changes in the system due to AHL are irreversible.
Chemosphere | 2018
Huarong Yu; Fangshu Qu; Xiaolei Zhang; Peng Wang; Guibai Li; Heng Liang
Quorum quenching (QQ) has been used to control biofouling in membrane bioreactors (MBRs), but the effect of QQ on the performance of MBR has not been systematically studied. This study investigated the effect of QQ on ammonia removal in MBR especially in some stressful conditions. The results showed that membrane fouling was effectively alleviated by QQ in all conditions. For the short HRT (3.94 h), the ammonia removal in QQ-MBR was fluctuating. In the presence of nitrification inhibitors (acetonitrile and allylthiourea) or at low temperature (10 °C), QQ induced much more significant suppression on nitrification in batch test and MBR. The number of the ammonia oxidizing bacteria (AOB) was not decreasing in these situations, which indicated that QQ only suppressed the activity of AOB. In all, comprehensive considerations should be taken into account when applying a QS tuning strategy to a bioreactor.