Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huawen Cao is active.

Publication


Featured researches published by Huawen Cao.


International Geology Review | 2017

U–Pb dating of zircon and cassiterite from the Early Cretaceous Jiaojiguan iron-tin polymetallic deposit, implications for magmatism and metallogeny of the Tengchong area, western Yunnan, China

Huawen Cao; Yun-Hui Zhang; Qiu-Ming Pei; Rong-Qing Zhang; Li Tang; Bin Lin; Guojun Cai

ABSTRACT The newly discovered Jiaojiguan deposit, a medium-scale skarn iron-tin polymetallic deposit on the Sino-Burma boundary of Yunnan Province (SW China), is spatially associated with the biotite monzonitic granite. Here, we report new in situ zircon LA-MC-ICP-MS U–Pb ages, trace element and Hf isotope data from the granite, and U–Pb dating ages of cassiterite from the ore bodies. In this study, we obtain a weighted mean 206Pb/238U age of 124.1 ± 1.4 Ma for the zircon and a 207Pb/206Pb-238U/206Pb intercept age of 123.8 ± 2.2 Ma for the cassiterite. The granite crystallized during the Early Cretaceous, with zircons exhibiting εHf(t) values from −5.8 to −0.6 and two-stage Hf model ages (TDM2) of 1.21–1.54 Ga. The close temporal and spatial links between pluton emplacement and ore-forming events suggest that magmatic-hydrothermal events were the key factors that triggered the genesis of the iron-tin polymetallic deposits in the area. Regional geochronological data show that tin mineralization took place three times during the Cretaceous–Palaeogene in the Tengchong block due to re-melting of the underlying supposed Proterozoic (1.5 ± 0.5 Ga) Sn-rich strata/materials. Compared with those in the Bangong–Nujiang metallogenic belt (BNMB), we propose that the Cretaceous iron-tin polymetallic mineralization events in Tengchong–Baoshan closely resemble those of the Bangong–Nujiang belt in northern Tibet, both of which have experienced similar tectono-magmatic-metallogenic histories since the Mesozoic.


International Geology Review | 2018

Geochemistry, zircon U–Pb geochronology and Hf isotopes of Jurassic-Cretaceous granites in the Tengchong terrane, SW China: implications for the Mesozoic tectono-magmatic evolution of the Eastern Tethyan Tectonic Domain

Huawen Cao; Yun-Hui Zhang; Li Tang; Steven P. Hollis; Shouting Zhang; Qiu-Ming Pei; Chang Yang; Xiao-Shuan Zhu

ABSTRACT Recently identified Early Jurassic, Early Cretaceous, and Late Cretaceous granites of the Tengchong terrane, SW China, help to refine our understanding of the Mesozoic tectonic-magmatic evolutionary history of the region. We present new zircon U–Pb geochronological, Lu–Hf isotopic and geochemical data on these rocks. The zircon LA-ICP-MS U–Pb ages of the Mangzhangxiang, Laochangpo, and Guyong granites, and Guyong granodioritic microgranular enclaves are 185.6, 120.7, 72.9, and 72.7 Ma, respectively. Geochemical and Hf isotopic characteristics suggest the Mangzhangxiang and Laochangpo S-type granites were derived from partial melting of felsic crust and that the Guyong I-type granite and associated MMEs were generated through magma mixing/mingling. Mesozoic magmatism in the Tengchong terrane can be divided into three episodes: (1) the Triassic syn- and post-collisional magmatic event was related to the closure of the Palaeo-Tethyan Ocean, as represented by the Changning-Menglian suture zone; (2) the Jurassic to Early Cretaceous magmatism was related to the subduction of the Meso-Tethyan oceanic crust, as represented by the Myitkyina ophiolite belt; and (3) the Late Cretaceous magmatism was related to the subduction of the Neo-Tethyan oceanic crust, as represented by the Kalaymyo ophiolite belt. GRAPHICAL ABSTRACT


Geosciences Journal | 2018

Petrogenesis of the late Mesozoic highly fractionated I-type granites in the Luanchuan district: implications for the tectono-magmatic evolution of eastern Qinling

Yun-Hui Zhang; Huawen Cao; Mo Xu; Shouting Zhang; Li Tang; Shiyan Wang; Qiu-Ming Pei; Guojun Cai; Tong Shen

Late Mesozoic granites are extensively distributed in the Luanchuan district of eastern Qinling and can be divided into two types: Late Jurassic to Early Cretaceous granites (ore-related plutons) and Late Cretaceous granites (Laojunshan batholith). This study presents new geochemical and zircon U-Pb-Hf isotopic data from the Shibaogou and Yuku plutons to provide robust constraints on the petrogenesis and tectonic significance of the late Mesozoic granites in the Luanchuan district. Zircon U-Pb dating results yielded weighted mean 206Pb/238U ages of 149.1 ± 0.8 Ma and 150.5 ± 0.8 Ma, which were interpreted as the crystallization ages of the Shibaogou and Yuku plutons, respectively. We propose that the late Mesozoic granites contain high concentrations of SiO2 and alkali elements (Na2O + K2O) and feature metaluminous to weakly peraluminous characteristics. Enrichment in light rare earth elements and large ion lithophile elements and depletion in high field strength elements are observed. Mineralogical and geochemical evidence reveal that the late Mesozoic granites are highly fractionated I-type granites with fractional crystallization of feldspar, plagioclase and accessory minerals (e.g., apatite and titanite or magnetite). Based on the Hf composition, we suggest that the parental magmas of the ore-related plutons were derived from remelting of the Taihua and Xiong’er groups with minor contributions of mantle-derived materials and that the Laojunshan batholith was generated by the hybridization of ancient crust- (Kuanping group) and mantle-derived components. Collectively, the above arguments indicates a tectonic transition from compression to post-collisional extension during the late Mesozoic, that was likely triggered by the continental collision of the North China Block and the Yangtze Block, which generated numerous contemporaneous granites and Mo-W-Pb-Zn-Ag-Au poly-metallic deposits.


International Geology Review | 2018

Permo–Triassic granitoids of the Xing’an–Mongolia segment of the Central Asian Orogenic Belt, Northeast China: age, composition, and tectonic implications

Qiu-Ming Pei; Shouting Zhang; Ken-ichiro Hayashi; Huawen Cao; Dong Li; Li Tang; Xinkai Hu; Hao-Xing Li; Da-Ren Fang

ABSTRACT The Xing’an–Mongolia orogenic belt is located in the southeastern segment of the Central Asian Orogenic Belt. Its tectonic evolution, especially during the Late Palaeozoic to Early Mesozoic, remains controversial. Here, we report new zircon U–Pb dates, whole-rock geochemistry, and Hf isotopes of representative samples from four plutons in the Linxi area of Northeast China to provide new constraints on this issue. Zircon U–Pb dating indicates that the intrusions were emplaced in two stages: (1) Late Permian to Early Triassic (the Banshifangzi and Xinangou plutons (252 ± 3)–(246.3 ± 3.3) Ma); and (2) Late Triassic (the Baoshan and Hada plutons (220.8 ± 2.7)–(211.4 ± 2.6) Ma). Their positive εHf(t) values (6.6–14.1), coupled with their geochemical characteristics, suggest that the provenance of investigated granitoids were most likely to be dominated by juvenile crustal materials. Based on these new data and previous studies, we propose three stages of tectonic evolution during the Late Palaeozoic–Early Mesozoic in the XMOB: (1) Late Carboniferous–Early Permian (330–270 Ma): double-sided subduction of the Palaeo-Asian Ocean; (2) Middle Permian–Middle Triassic (270–237 Ma): the closure of the Palaeo-Asian Ocean and subsequent continent–continent collision between the North China Craton and the South Mongolia Terrane; and (3) Late Triassic (237–211 Ma): post-collisional extension. Graphical Abstract


International Geology Review | 2018

Geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes of the Early Paleogene gabbro and granite from Central Lhasa, southern Tibet: petrogenesis and tectonic implications

Yun-Hui Zhang; Huawen Cao; Steven P. Hollis; Li Tang; Mo Xu; Junsheng Jiang; Shunbao Gao; Yang-shuang Wang

ABSTRACT The Tibetan Plateau is a composite orogenic belt that has experienced prolonged subduction, obduction, and collisional processes, during the opening and closure of successive Tethyan oceans. We present new zircon U-Pb ages and Hf isotopes, and whole-rock geochemical and Sr-Nd-Pb isotopic data from the Early Paleogene Longge’er gabbro and Qingduxiang granite of Central Lhasa, southern Tibet. Together these allow us to refine existing models for widespread magmatic activity associated with the subduction of the Neo-Tethyan Ocean. The Longge’er gabbro (53.5 ± 1.6 Ma) belongs to the low-K tholeiitic to medium-K and metaluminous series, while the Qingduxiang granite (54.5 ± 0.9 Ma) is characterized as high-K, calc-alkaline, metaluminous, and of I-type affinity. Both intrusions are enriched in the LREE and depleted in the HREE with negative Eu, Ba, Nb, Ta, Sr, and Ti anomalies. Trace elements characteristics and enriched whole-rock Sr-Nd-Pb and zircon Hf isotopic compositions demonstrate that the gabbro was derived from partial melting of enriched lithosphere mantle metasomatized by Central-Lhasa ancient crustal materials, while the I-type granite was generated by partial melting of Central-Lhasa ancient lower crust combined with magmas derived from Southern-Lhasa juvenile crust. Geochemical compositions of the gabbro and granite reveal the Early Paleogene magmatism was emplaced in a shallow extensional setting related to slab break off following the closure of the Neo-Tethyan Ocean. Combined with previous studies, we can infer slab rollback occurred from Late Cretaceous (~69 Ma) to Early Eocene (55 Ma), while slab break off was shortly lived at ca. 55–49 Ma. Consequently, the India-Asia collision must not have started later than ca. 55 Ma. Graphical Abstract


Gondwana Research | 2016

Early Paleozoic tectonic evolution of the North Qinling orogenic belt: Evidence from geochemistry, phase equilibrium modeling and geochronology of metamorphosed mafic rocks from the Songshugou ophiolite

Li Tang; M. Santosh; Yunpeng Dong; Toshiaki Tsunogae; Shouting Zhang; Huawen Cao


Journal of Asian Earth Sciences | 2014

Geology, geochemistry and geochronology of the Jiaojiguanliangzi Fe-polymetallic deposit, Tengchong County, Western Yunnan (China): Regional tectonic implications

Huawen Cao; Shouting Zhang; Jin-Zhan Lin; Luo Zheng; Jun-De Wu; Dong Li


Journal of Asian Earth Sciences | 2015

The Luanchuan Mo–W–Pb–Zn–Ag magmatic–hydrothermal system in the East Qinling metallogenic belt, China: Constrains on metallogenesis from C–H–O–S–Pb isotope compositions and Rb–Sr isochron ages

Huawen Cao; Shouting Zhang; M. Santosh; Luo Zheng; Li Tang; Dong Li; Xuhuang Zhang; Yun-Hui Zhang


Ore Geology Reviews | 2016

Late Cretaceous magmatism and related metallogeny in the Tengchong area: Evidence from geochronological, isotopic and geochemical data from the Xiaolonghe Sn deposit, western Yunnan, China

Huawen Cao; Hao Zou; Yun-Hui Zhang; Shouting Zhang; Luo Zheng; Linkui Zhang; Li Tang; Qiu-Ming Pei


Geoscience frontiers | 2017

Timing of formation of the Hongdonggou Pb-Zn polymetallic ore deposit, Henan Province, China: Evidence from Rb-Sr isotopic dating of sphalerites

Fan Yang; Gongwen Wang; Huawen Cao; Ruixi Li; Li Tang; Yufeng Huang; Hao Zhang; Fei Xue; Wenjuan Jia; Nana Guo

Collaboration


Dive into the Huawen Cao's collaboration.

Top Co-Authors

Avatar

Shouting Zhang

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar

Li Tang

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar

Yun-Hui Zhang

Chengdu University of Technology

View shared research outputs
Top Co-Authors

Avatar

Qiu-Ming Pei

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar

M. Santosh

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar

Dong Li

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar

Xinkai Hu

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar

Fan Yang

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar

Guangming Li

China Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Hao Zou

Chengdu University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge