Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hubert H. G. Savenije is active.

Publication


Featured researches published by Hubert H. G. Savenije.


Geophysical Research Abstracts 17, Vienna (Austria) 12-17 April, 2015 | 2015

Influence of soil and climate on root zone storage capacity

T. Euser; Hilary McMillan; Markus Hrachowitz; H. C. Winsemius; Hubert H. G. Savenije

The root zone water storage capacity (Sr) of a catchment is an important variable for the hydrological behaviour of a catchment; it strongly influences the storage, transpiration and runoff generation in an area. However, the root zone storage capacity is largely heterogeneous and not measurable. There are different theories about the variables affecting the root zone storage capacity; among the most debated are soil, vegetation and climate. The effect of vegetation and soil is often accounted for by detailed soil and land use maps. To investigate the effect of climate on the root zone storage capacity, an analogue can be made between the root zone storage capacity of a catchment and the human habit to design and construct reservoirs: both storage capacities help to overcome a dry period of a certain length. Humans often use the mass curve technique to determine the required storage needed to design the reservoir capacity. This mass curve technique can also be used to derive the root zone storage capacity created by vegetation in a certain ecosystem and climate (Gao et al., 2014). Only precipitation and discharge or evaporation data are required for this method. This study tests whether Sr values derived by both the mass curve technique and from soil maps are comparable for a range of catchments in New Zealand. Catchments are selected over a gradient of climates and land use. Special focus lies on how Sr values derived for a larger catchment are representative for smaller nested catchments. The spatial differences are examined between values derived from soil data and from climate and flow data.


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2013

A decade of Predictions in Ungauged Basins (PUB)—a review

Markus Hrachowitz; Hubert H. G. Savenije; Günter Blöschl; Jeffrey J. McDonnell; Murugesu Sivapalan; John W. Pomeroy; Berit Arheimer; Theresa Blume; Martyn P. Clark; Uwe Ehret; Fabrizio Fenicia; Jim E Freer; Alexander Gelfan; Hoshin V. Gupta; Denis A. Hughes; Rolf Hut; Alberto Montanari; Saket Pande; Doerthe Tetzlaff; Peter Troch; Stefan Uhlenbrook; Thorsten Wagener; H. C. Winsemius; Ross Woods; Erwin Zehe; Christophe Cudennec

Abstract The Prediction in Ungauged Basins (PUB) initiative of the International Association of Hydrological Sciences (IAHS), launched in 2003 and concluded by the PUB Symposium 2012 held in Delft (23–25 October 2012), set out to shift the scientific culture of hydrology towards improved scientific understanding of hydrological processes, as well as associated uncertainties and the development of models with increasing realism and predictive power. This paper reviews the work that has been done under the six science themes of the PUB Decade and outlines the challenges ahead for the hydrological sciences community. Editor D. Koutsoyiannis Citation Hrachowitz, M., Savenije, H.H.G., Blöschl, G., McDonnell, J.J., Sivapalan, M., Pomeroy, J.W., Arheimer, B., Blume, T., Clark, M.P., Ehret, U., Fenicia, F., Freer, J.E., Gelfan, A., Gupta, H.V., Hughes, D.A., Hut, R.W., Montanari, A., Pande, S., Tetzlaff, D., Troch, P.A., Uhlenbrook, S., Wagener, T., Winsemius, H.C., Woods, R.A., Zehe, E., and Cudennec, C., 2013. A decade of Predictions in Ungauged Basins (PUB)—a review. Hydrological Sciences Journal, 58 (6), 1198–1255.


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2013

Panta Rhei-Everything Flows: Change in hydrology and society-The IAHS Scientific Decade 2013-2022

Alberto Montanari; G. Young; Hubert H. G. Savenije; Denis A. Hughes; Thorsten Wagener; L. Ren; Demetris Koutsoyiannis; Christophe Cudennec; Elena Toth; Salvatore Grimaldi; Günter Blöschl; Murugesu Sivapalan; Keith Beven; Hoshin V. Gupta; Matthew R. Hipsey; Bettina Schaefli; Berit Arheimer; Eva Boegh; Stanislaus J. Schymanski; G. Di Baldassarre; Bofu Yu; Pierre Hubert; Y. Huang; Andreas Schumann; D.A. Post; V. Srinivasan; Ciaran J. Harman; Sally E. Thompson; M. Rogger; Alberto Viglione

Abstract The new Scientific Decade 2013–2022 of IAHS, entitled “Panta Rhei—Everything Flows”, is dedicated to research activities on change in hydrology and society. The purpose of Panta Rhei is to reach an improved interpretation of the processes governing the water cycle by focusing on their changing dynamics in connection with rapidly changing human systems. The practical aim is to improve our capability to make predictions of water resources dynamics to support sustainable societal development in a changing environment. The concept implies a focus on hydrological systems as a changing interface between environment and society, whose dynamics are essential to determine water security, human safety and development, and to set priorities for environmental management. The Scientific Decade 2013–2022 will devise innovative theoretical blueprints for the representation of processes including change and will focus on advanced monitoring and data analysis techniques. Interdisciplinarity will be sought by increased efforts to connect with the socio-economic sciences and geosciences in general. This paper presents a summary of the Science Plan of Panta Rhei, its targets, research questions and expected outcomes. Editor Z.W. Kundzewicz Citation Montanari, A., Young, G., Savenije, H.H.G., Hughes, D., Wagener, T., Ren, L.L., Koutsoyiannis, D., Cudennec, C., Toth, E., Grimaldi, S., Blöschl, G., Sivapalan, M., Beven, K., Gupta, H., Hipsey, M., Schaefli, B., Arheimer, B., Boegh, E., Schymanski, S.J., Di Baldassarre, G., Yu, B., Hubert, P., Huang, Y., Schumann, A., Post, D., Srinivasan, V., Harman, C., Thompson, S., Rogger, M., Viglione, A., McMillan, H., Characklis, G., Pang, Z., and Belyaev, V., 2013. “Panta Rhei—Everything Flows”: Change in hydrology and society—The IAHS Scientific Decade 2013–2022. Hydrological Sciences Journal. 58 (6) 1256–1275.


Water Resources Research | 2010

Origin and fate of atmospheric moisture over continents

R. J. van der Ent; Hubert H. G. Savenije; Bettina Schaefli; Susan C. Steele-Dunne

There has been a long debate on the extent to which precipitation relies on terrestrial evaporation (moisture recycling). In the past, most research focused on moisture recycling within a certain region only. This study makes use of new definitions of moisture recycling to study the complete process of continental moisture feedback. Global maps are presented identifying regions that rely heavily on recycled moisture as well as those that are supplying the moisture. An accounting procedure based on ERA‐Interim reanalysis data is used to calculate moisture recycling ratios. It is computed that, on average, 40% of the terrestrial precipitation originates from land evaporation and that 57% of all terrestrial evaporation returns as precipitation over land. Moisture evaporating from the Eurasian continent is responsible for 80% of China’s water resources. In South America, the Rio de la Plata basin depends on evaporation from the Amazon forest for 70% of its water resources. The main source of rainfall in the Congo basin is moisture evaporated over East Africa, particularly the Great Lakes region. The Congo basin in its turn is a major source of moisture for rainfall in the Sahel. Furthermore, it is demonstrated that due to the local orography, local moisture recycling is a key process near the Andes and the Tibetan Plateau. Overall, this paper demonstrates the important role of global wind patterns, topography and land cover in continental moisture recycling patterns and the distribution of global water resources.


Water Resources Research | 2008

Learning from model improvement: On the contribution of complementary data to process understanding

Fabrizio Fenicia; Jeffrey J. McDonnell; Hubert H. G. Savenije

A priori determined model structures are common in catchment rainfall-runoff modeling. While this has resulted in many ready-to-use modeling tools, there are several shortcomings of a one-size-fits-all model structure. The uniqueness of catchments with respect to their hydrological behavior and the need to adapt model complexity to data availability challenge this status quo. We present a flexible approach to model development where the model structure is adapted progressively based on catchment characteristics and the data described by the experimentalist. We demonstrate this approach with the Maimai catchment in New Zealand, a location with a large availability of data, including stream discharge, groundwater levels, and stream isotope measurements. Different types of data are introduced progressively, and the architecture of the model is adjusted in a stepwise fashion to better describe the processes suggested by the new data sources. The revised models are developed in a way to strike a balance between model complexity and data availability, by keeping models as simple as possible, but complex enough to explain the dynamics of the data. Our work suggests that (1) discharge data provides information on the dynamics of storage (represented by the “free” water in the reservoirs) subject to pressure wave propagation generated by rainfall into the catchment, (2) groundwater data provides information on thresholds and on the contribution of different portions of the catchment to stream discharge, and (3) isotope data provides information on particle transport and mixing of the rainfall with the storage present in the catchment. Moreover, while groundwater data appear to be correlated with discharge data, and only a marginal improvement could be obtained adding this information to the model development process, isotope data appear to provide an orthogonal view on catchment behavior. This result contributes to understanding the value of data for modeling, which may serve as a guidance in the process of gauging ungauged catchments.


Water Resources Research | 2008

Understanding catchment behavior through stepwise model concept improvement

Fabrizio Fenicia; Hubert H. G. Savenije; Patrick Matgen; Laurent Pfister

Lack of data is one of the main limitations for hydrological modeling. However, it is often used as a justification for over simplifying, poorly performing models. If we want to enhance our understanding of hydrological systems, it is important to fully exploit the information contained in the available data, and to learn from model deficiencies. In this paper, we propose a methodology where we systematically update the model structure, progressively incorporating new hypotheses of catchment behavior. We apply this methodology to the Alzette river basin in Luxembourg, showing how stepwise model improvement helps to identify the behavior of this catchment. We show that the most significant improvement of the evolving model structure is associated to the characterization of antecedent wetness. This is improved accounting for interception, which affects vertical storage distribution, and accounting for rainfall spatial heterogeneity, which influences storage variations in the horizontal dimension. Overall, our results suggested that, due to the damping effect of the basin, the description of fast catchment response benefits more from spatially distributed information than that of slow catchment response.


Water International | 2002

Water as an Economic Good and Demand Management Paradigms with Pitfalls

Hubert H. G. Savenije; Pieter van der Zaag

Abstract In certain circles, demand management is seen as one and the same thing as economic pricing. This thinking is stimulated by the Dublin principle that water should be considered an economic good. But is this reasoning correct? Is economic pricing an adequate means to reach more desirable levels of demand? There is considerable misunderstanding about what the concept of water as an economic good implies. In this paper it is argued that water pricing should primarily serve the purpose of financial sustainability through cost recovery. Moreover, in water pricing, adequate attention should be given to equity considerations through, for example, increasing block tariffs. Instead of economic pricing there is a need for defining a reasonable price, which provides full cost recovery but which safeguards ecological requirements and access to safe water for the poor. Giving a reasonable price to water has the additional benefit that it sends out a clear signal to the users that water should be used wisely, but the prime target of water pricing remains cost recovery. A major argument of neoclassical economists is that economic pricing of water will facilitate the re-allocation of water from sectors with lower added value (such as agriculture) to sectors with a higher added value (such as urban water use). However, the value of alternative uses of irrigation water is often grossly over-estimated. Adequate and effective regulations may suffice in order to achieve the optimal allocation of water resources.


Water Resources Research | 2009

On the calibration of hydrological models in ungauged basins: a framework for integrating hard and soft hydrological information.

H. C. Winsemius; Bettina Schaefli; Alberto Montanari; Hubert H. G. Savenije

This paper presents a calibration framework based on the generalized likelihood uncertainty estimation (GLUE) that can be used to condition hydrological model parameter distributions in scarcely gauged river basins, where data is uncertain, intermittent or nonconcomitant. At the heart of this framework is the conditioning of the model parameters such as to reproduce key signatures of the observed data within some limits of acceptability. These signatures are either based on hard or on soft information. Hard information signatures are defined as signatures for which the limits of acceptability may be objectively derived from the distribution of long series of observed values, and which effectively constrain the model parameters. Soft signatures are less effective in parameter conditioning or their limits of acceptability cannot be objectively derived. During random parameter sampling, parameter sets are accepted as equally likely if they meet all the hard limits of acceptability. This results in an intermediate parameter distribution, which can be used to reduce the sampling limits. Then, the soft information may be introduced in a second constraining step to reach a final parameter distribution. The modeler can use the final results as a guideline for a further search for information, possibly from new observations yet to collect. In an application of the framework to the Luangwa catchment in Zambia, three information signatures are retrieved from a data set of old discharge time series and used to condition the parameters of a daily conceptual rainfall-runoff model. We performed two independent calibration experiments with two significantly different satellite rainfall estimates as model input. The results show consistent parameter distributions and considerable reduction of the prior parameter space and corresponding output realizations. These results illustrate the potential of the proposed calibration framework for predictions in scarcely gauged catchments.


Archive | 2013

Runoff prediction in ungauged basins : synthesis across processes, places and scales

Günter Blöschl; Murugesu Sivapalan; Thorsten Wagener; Alberto Viglione; Hubert H. G. Savenije

List of contributors Foreword Thomas Dunne Preface Gunter Bloschl, Murugesu Sivapalan, Thorsten Wagener, Alberto Viglione and Hubert Savenije 1. Introduction Gunter Bloschl, Murugesu Sivapalan, Thorsten Wagener, Alberto Viglione and Hubert Savenije 2. A synthesis framework for runoff predictions in ungauged basins Thorsten Wagener, Gunter Bloschl, David Goodrich, Hoshin V. Gupta, Murugesu Sivapalan, Yasuto Tachikawa, Peter Troch and Markus Weiler 3. A data acquisition framework for predictions of runoff in ungauged basins Brian McGlynn, Gunter Bloschl, Marco Borga, Helge Bormann, Ruud Hurkmans, Jurgen Komma, Lakshman Nandagiri, Remko Uijlenhoet and Thorsten Wagener 4. Process realism: flow paths and storage Dorthe Tetzlaff, Ghazi Al-Rawas, Gunter Bloschl, Sean K. Carey, Ying Fan, Markus Hrachowitz, Robert Kirnbauer, Graham Jewitt, Hjalmar Laudon, Kevin J. McGuire, Takahiro Sayama, Chris Soulsby, Erwin Zehe and Thorsten Wagener 5. Prediction of annual runoff in ungauged basins Thomas McMahon, Gregor Laaha, Juraj Parajka, Murray C. Peel, Hubert Savenije, Murugesu Sivapalan, Jan Szolgay, Sally Thompson, Alberto Viglione, Ross Woods and Dawen Yang 6. Prediction of seasonal runoff in ungauged basins R. Weingartner, Gunter Bloschl, David Hannah, Danny Marks, Juraj Parajka, Charles Pearson, Magdalena Rogger, Jose Luis. Salinas, Eric Sauquet, Sri Srikanthan, Sally Thompson and Alberto Viglione 7. Prediction of flow duration curves in ungauged basins Attilio Castellarin, Gianluca Botter, Denis A. Hughes, Suxia Liu, Taha B. M. J. Ouarda, Juraj Parajka, David Post, Murugesu Sivapalan, Christopher Spence, Alberto Viglione and Richard Vogel 8. Prediction of low flows in ungauged basins Gregor Laaha, Siegfried Demuth, Hege Hisdal, Charles N. Kroll, Henny A. J. van Lanen, Thomas Nester, Magdalena Rogger, Eric Sauquet, Lena M. Tallaksen, Ross Woods and Andy Young 9. Prediction of floods in ungauged basins Dan Rosbjerg, Gunter Bloschl, Donald H. Burn, Attilio Castellarin, Barry Croke, Guliano Di Baldassarre, Vito Iacobellis, Thomas Kjeldsen, George Kuczera, Ralf Merz, Alberto Montanari, David Morris, Taha B. M. J. Ouarda, Liliang Ren, Magdalena Rogger, Jose Luis Salinas, Elena Toth and Alberto Viglione 10. Predictions of runoff hydrographs in ungauged basins Juraj Parajka, Vazken Andreassian, Stacey Archfield, Andras Bardossy, Francis Chiew, Qingyun Duan, Alexander Gelfan, Kamila Hlavcova, Ralf Merz, Neil McIntyre, Ludovic Oudin, Charles Perrin, Magdalena Rogger, Jose Luis Salinas, Hubert Savenije, Jon Olav Skoien, Thorsten Wagener, Erwin Zehe and Yongqiang Zhang 11. Case studies Hubert Savenije, Murugesu Sivapalan, Trent Biggs, Shaofeng Jia, Leonid M. Korytny, E.A.Ilyichyova, Boris Gartsman, John W. Pomeroy, Kevin Shook, Xing Fang, Tom Brown, Denis A. Hughes, Stacey Archfield, Jos Samuel, Paulin Coulibaly, Robert A. Metcalfe, Attilio Castellarin, Ralf Merz, Gunter Humer, Ataur Rahman, Khaled Haddad, Erwin Weinmann, George Kuczera, Theresa Blume, Armand Crabit, Francois Colin, Roger Moussa, Hessel Winsemius, Hubert Savenije, Jens Liebe, Nick van de Giesen, M. Todd Walter, Tammo S. Steenhuis, Jeffrey R. Kennedy, David Goodrich, Carl L. Unkrich, Dominic Mazvimavi, Neil R. Viney, Kuniyoshi Takeuchi, H. A. P. Hapuarachchi, Anthony S. Kiem, Hiroshi Ishidaira, Tianqi Ao, Jun Magome, Maichun C. Zhou, Mikhail Georgievski, Guoqiang Wang, Chihiro Yoshimura, Berit Arheimer, Goran Lindstrom and Shijun Lin 12. Synthesis across processes, places and scales Hoshin V. Gupta, Gunter Bloschl, Jeffrey McDonnell, Hubert Savenije, Murugesu Sivapalan, Alberto Viglione and Thorsten Wagener 13. Recommendations Kuniyoshi Takeuchi, Gunter. Bloschl, Hubert Savenije, John Schaake, Murugesu Sivapalan, Alberto Viglione, Thorsten Wagener and Gordon Young Appendix: summary of studies used in the comparative assessments References Index.This book is devoted to predicting runoff in ungauged basins (PUB), i.e., predicting runoff at those locations where no runoff data are available. It aims at a synthesis of research on predictions of runoff in ungauged basins across processes, places and scales as a response to the dilemma of fragmentation in hydrology. It takes a comparative approach to learning from the differences and similarities between catchments around the world. The book also provides a comparative performance assessment (in the form of blind testing) of methods that are being used for predictions in ungauged basins, interpreted in a hydrologically meaningful way. It therefore throws light on the status of PUB at the present moment and can serve as a benchmark against which future progress on PUB can be judged. In so doing, the book has also come out with a new scientific framework that can guide the advances that are needed to underpin PUB and to advance the science of hydrology as a whole. The synthesis presented in the book is built on the collective experience of a large number of researchers around the world inspired by the PUB initiative of the International Association of Hydrological Sciences, which makes it truly a community effort. It has provided insights into the scientific, technical and societal factors that contribute to PUB. On the basis of the synthesis presented in this book, recommendations are made on the predictive, scientific and community aspects of PUB and of hydrology as a whole. www.cambridge.org


Journal of Hydrology | 1995

New definitions for moisture recycling and the relationship with land-use changes in the Sahel

Hubert H. G. Savenije

Abstract In the Sahel, recycling of moisture through evapotranspiration appears to be responsible for more than 90% of the rainfall. As a result, there exists an important feedback mechanism between land-use and climate, which has immediate implications for the management of natural resources. The challenge is to find sustainable combinations of land-use and vegetation that maximize recycling of moisture, while at the same time allowing adequate agricultural production. In this paper, a theory of moisture recycling is presented including the derivation of moisture recycling indicators, one of which is based on the salinity of the rainfall. Subsequently, the theory is verified with observations of rainfall and runoff in the Sahel over the period 1952–1990.

Collaboration


Dive into the Hubert H. G. Savenije's collaboration.

Top Co-Authors

Avatar

Fabrizio Fenicia

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Markus Hrachowitz

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Günter Blöschl

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Stefan Uhlenbrook

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Thom Bogaard

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Huayang Cai

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Pieter van der Zaag

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Alberto Viglione

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Demetris Koutsoyiannis

National Technical University of Athens

View shared research outputs
Researchain Logo
Decentralizing Knowledge