Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hubert Hondermarck is active.

Publication


Featured researches published by Hubert Hondermarck.


Cytokine & Growth Factor Reviews | 2000

FGF signals for cell proliferation and migration through different pathways

Bénoni Boilly; Anne-Sophie Vercoutter-Edouart; Hubert Hondermarck; Victor Nurcombe; X Le Bourhis

FGFs are pleiotropic growth factors that control cell proliferation, migration and differentiation. However, FGF transduction studies have so far focused primarily on the mitogenic effect of this growth factor family and it has been difficult to assess if the described intracellular signaling pathways are dedicated solely to cell proliferation, or whether they are equally important for the migratory activity often seen in responsive cells. We review here papers in which the migratory effects of this growth factor family were clearly discriminated from proliferative effects. In toto, these studies suggest that cells use different signaling pathways for migration, such as Src and p38 MAP kinase, from those for proliferation, which tend to upregulate the ERKs. Which signaling pathway a cell uses for proliferation or migration appears to depend on many factors, including the structure and the quantity of available FGF trapped in the basal lamina by heparan sulfate co-factors, the disposition of cognate high affinity receptors and the general environment of the cell. Thus the density of the cell population, the state of the cell cycle, the presence of other factors or receptors will modulate the migratory response of cells to FGF.


Journal of Biological Chemistry | 2005

H19 mRNA-like Noncoding RNA Promotes Breast Cancer Cell Proliferation through Positive Control by E2F1

Nathalie Berteaux; Séverine Lottin; Didier Monté; Sébastien Pinte; Brigitte Quatannens; Jean Coll; Hubert Hondermarck; Jean-Jacques Curgy; Thierry Dugimont; Eric Adriaenssens

The imprinted H19 gene has riboregulatory functions. We show here that H19 transcription is up-regulated during the S-phase of growth-stimulated cells and that the H19 promoter is activated by E2F1 in breast cancer cells. H19 repression by pRb and E2F6 confirms the E2F1-dependent control of the H19 promoter. Consistently, we demonstrate by chromatin immunoprecipitation assays that endogenous E2F1 is recruited to the H19 promoter in vivo. The functionality of E2F promoter sites was further confirmed by gel shift and mutagenesis experiments, revealing that these sites are required for binding and promoter response to E2F1 exogenous expression and serum stimulation. Furthermore, we show that H19 overexpression confers a growth advantage on breast cancer cells released from growth arrest as well as in asynchronously growing cells. The H19 knockdown by small interfering RNA duplexes impedes S-phase entry in both wild-type and stably H19-transfected cells. Based on these findings, we conclude that the H19 RNA is actively linked to E2F1 to promote cell cycle progression of breast cancer cells. This clearly supports the H19 oncogenic function in breast tumor genesis.


Journal of Biological Chemistry | 2001

Nerve growth factor stimulates proliferation and survival of human breast cancer cells through two distinct signaling pathways

Simon Descamps; Robert-Alain Toillon; Eric Adriaenssens; Valérie Pawlowski; Simon M. Cool; Victor Nurcombe; Xuefen Le Bourhis; Bénoni Boilly; Jean-Philippe Peyrat; Hubert Hondermarck

We show here that the neurotrophin nerve growth factor (NGF), which has been shown to be a mitogen for breast cancer cells, also stimulates cell survival through a distinct signaling pathway. Breast cancer cell lines (MCF-7, T47-D, BT-20, and MDA-MB-231) were found to express both types of NGF receptors: p140 trkA and p75NTR. The two other tyrosine kinase receptors for neurotrophins, TrkB and TrkC, were not expressed. The mitogenic effect of NGF on breast cancer cells required the tyrosine kinase activity of p140 trkA as well as the mitogen-activated protein kinase (MAPK) cascade, but was independent of p75NTR. In contrast, the anti-apoptotic effect of NGF (studied using the ceramide analogue C2) required p75NTR as well as the activation of the transcription factor NF-kB, but neither p140 trkA nor MAPK was necessary. Other neurotrophins (BDNF, NT-3, NT-4/5) also induced cell survival, although not proliferation, emphasizing the importance of p75NTR in NGF-mediated survival. Both the pharmacological NF-κB inhibitor SN50, and cell transfection with IkBm, resulted in a diminution of NGF anti-apoptotic effect. These data show that two distinct signaling pathways are required for NGF activity and confirm the roles played by p75NTR and NF-κB in the activation of the survival pathway in breast cancer cells.


Nanomedicine: Nanotechnology, Biology and Medicine | 2016

Antibody-targeted biodegradable nanoparticles for cancer therapy

Vahid Heravi Shargh; Hubert Hondermarck; Mingtao Liang

The use of nanotechnology has great potentials to revolutionize the future cancer diagnosis and therapy. In this context, various nanoparticles (NPs) have been developed for targeted delivery of diagnostic/therapeutic agents to the tumor sites, which thus result in greater efficacy and much less side effects. The targeting property of NPs is often achieved by functionalizing their surface with tumor-specific ligands, such as antibodies, peptides, small molecules and oligonucleotides. In this review, we will discuss recent progress in the multifunctional design of antibody-targeted NPs with a special focus on liposomal, polymeric and protein-based delivery systems.


Oncogene | 2009

TrkA overexpression enhances growth and metastasis of breast cancer cells

Chann Lagadec; Samuel Meignan; Eric Adriaenssens; B Foveau; Elsa Vanhecke; Rodrigue Romon; Robert-Alain Toillon; B Oxombre; Hubert Hondermarck; X Le Bourhis

The Trk family of neurotrophin tyrosine kinase receptors is emerging as an important player in carcinogenic progression in non-neuronal tissues. Here, we show that breast tumors present high levels of TrkA and phospho-TrkA compared to normal breast tissues. To further evaluate the precise functions of TrkA overexpression in breast cancer development, we have performed a series of biological tests using breast cancer cells that stably overexpress TrkA. We show that (1) TrkA overexpression promoted cell growth, migration and invasion in vitro; (2) overexpression of TrkA per se conferred constitutive activation of its tyrosine kinase activity; (3) signal pathways including PI3K-Akt and ERK/p38 MAP kinases were activated by TrkA overexpression and were required for the maintenance of a more aggressive cellular phenotype; and (4) TrkA overexpression enhanced tumor growth, angiogenesis and metastasis of xenografted breast cancer cells in immunodeficient mice. Moreover, recovered metastatic cells from the lungs exhibited enhanced anoikis resistance that was abolished by the pharmacological inhibitor K252a, suggesting that TrkA-promoted breast tumor metastasis could be mediated at least in part by enhancing anoikis resistance. Together, these results provide the first direct evidence that TrkA overexpression enhances the tumorigenic properties of breast cancer cells and point to TrkA as a potential target in breast cancer therapy.


Proteomics | 2001

Proteomics of breast cancer for marker discovery and signal pathway profiling

Hubert Hondermarck; Anne-Sophie Vercoutter-Edouart; Françoise Révillion; Jérôme Lemoine; Ikram El-Yazidi-Belkoura; Victor Nurcombe; Jean-Philippe Peyrat

Breast cancer is the most common form of cancer among women and the identification of markers to discriminate tumorigenic from normal cells, as well as the different stages of this pathology, is of critical importance. Two‐dimensional electrophoresis has been used before for studying breast cancer, but the progressive completion of human genomic sequencing and the introduction of mass spectrometry, combined with advanced bioinformatics for protein identification, have considerably increased the possibilities for characterizing new markers and therapeutic targets. Breast cancer proteomics has already identified markers of potential clinical interest (such as the molecular chaperone 14‐3‐3 sigma) and technological innovations such as large scale and high throughput analysis are now driving the field. Methods in functional proteomics have also been developed to study the intracellular signaling pathways that underlie the development of breast cancer. As illustrated with fibroblast growth factor‐2, a mitogen and motogen factor for breast cancer cells, proteomics is a powerful approach to identify signaling proteins and to decipher the complex signaling circuitry involved in tumor growth. Together with genomics, proteomics is well on the way to molecularly characterizing the different types of breast tumor, and thus defining new therapeutic targets for future treatment.


Cancer Research | 2008

Nerve growth factor is a potential therapeutic target in breast cancer.

Eric Adriaenssens; Elsa Vanhecke; Pasquine Saule; Alexandra Mougel; Adeline Page; Rodrigue Romon; Victor Nurcombe; Xuefen Le Bourhis; Hubert Hondermarck

We show here that nerve growth factor (NGF), the prototypic neurotrophin, can be targeted in breast cancer to inhibit tumor cell proliferation, survival, and metastasis. Analysis of a series of biopsies revealed widespread expression of NGF in the majority of human breast tumors, with anti-NGF immunoreactivity concentrated in the epithelial cancer cells. Moreover, immunodeficient mice xenografted with human breast cancer cells and treated with either anti-NGF antibodies or small interfering RNA against NGF displayed inhibited tumor growth and metastasis. Such treatments directed against NGF induced a decrease in cell proliferation with a concomitant increase in apoptosis of breast cancer cells and an inhibition of tumor angiogenesis. Together, these data indicate that targeting NGF in breast cancer may have therapeutic ramifications.


Molecular and Cellular Biology | 2008

A Novel H19 Antisense RNA Overexpressed in Breast Cancer Contributes to Paternal IGF2 Expression

Nathalie Berteaux; Nathalie Aptel; Guy Cathala; Céline Genton; Jean Coll; Anthony Daccache; Nathalie Spruyt; Hubert Hondermarck; Thierry Dugimont; Jean-Jacques Curgy; Thierry Forné; Eric Adriaenssens

ABSTRACT The H19/IGFf2 locus belongs to a large imprinted domain located on human chromosome 11p15.5 (homologue to mouse distal chromosome 7). The H19 gene is expressed from the maternal allele, while IGF2 is paternally expressed. Natural antisense transcripts and intergenic transcription have been involved in many aspects of eukaryotic gene expression, including genomic imprinting and RNA interference. However, apart from the identification of some IGF2 antisense transcripts, few data are available on that topic at the H19/IGF2 locus. We identify here a novel transcriptional activity at both the human and the mouse H19/IGF2 imprinted loci. This activity occurs antisense to the H19 gene and has the potential to produce a single 120-kb transcript that we called the 91H RNA. This nuclear and short-lived RNA is not imprinted in mouse but is expressed predominantly from the maternal allele in both mice and humans within the H19 gene region. Moreover, the transcript is stabilized in breast cancer cells and overexpressed in human breast tumors. Finally, knockdown experiments showed that, in humans, 91H, rather than affecting H19 expression, regulates IGF2 expression in trans.


Oncogene | 2003

Nerve growth factor overexpression and autocrine loop in breast cancer cells

Laurent Dollé; Ikram El Yazidi-Belkoura; Eric Adriaenssens; Victor Nurcombe; Hubert Hondermarck

We show here that nerve growth factor (NGF), the canonical neurotrophic factor, is synthesized and released by breast cancer cells. High levels of NGF transcript and protein were detected in breast cancer cells by reverse transcription-PCR, Western blotting, ELISA assay and immunohistochemistry. Conversely, NGF production could not be detected in normal breast epithelial cells at either the transcriptional or protein level. Confocal analysis indicated the presence of NGF within classical secretion vesicles. Breast cancer cell-produced NGF was biologically active, as demonstrated by its ability to induce the neuronal differentiation of embryonic neural precursor cells. Importantly, the constitutive growth of breast cancer cells was strongly inhibited by either NGF-neutralizing antibodies or K-252a, a pharmacological inhibitor of NGF receptor TrkA, indicating the existence of an NGF autocrine loop. Together, our data demonstrate the physiological relevance of NGF in breast cancer and its potential interest as a marker and therapeutic target.


Breast Cancer Research and Treatment | 2002

Epigallocatechin (EGC) of green tea induces apoptosis of human breast cancer cells but not of their normal counterparts.

David Vergote; Cécile Cren-Olivé; Valérie Chopin; Robert-Alain Toillon; Christian Rolando; Hubert Hondermarck; Xuefen Le Bourhis

Abstract(−)-Epigallocatechin (EGC), one of green tea polyphenols, has been shown to inhibit growth of cancer cells. However its mechanism of action is poorly known. We show here that EGC strongly inhibited the growth of breast cancer cell lines (MCF-7 and MDA-MB-231) but not that of normal breast epithelial cells. The inhibition of breast cancer cell growth was due to an induction of apoptosis, without any change in cell cycle progression. MCF-7 cells are known to express a wild-type p53 whereas MDA-MB-231 cells express a mutated p53. The fact that EGC induced apoptosis in both these cell lines suggests that the EGC-triggered apoptosis is independent of p53 status. Moreover, neutralizing antibodies against the death receptor Fas and inhibitors of caspases, such as caspase-8 and -10, efficiently inhibited the EGC-triggered apoptosis. In addition, immunoblotting revealed that EGC treatment was correlated with a decrease in Bcl-2 and an increase in Bax level. These results suggest that EGC-triggered apoptosis in breast cancer cells requires Fas signaling.

Collaboration


Dive into the Hubert Hondermarck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sam Faulkner

University of Newcastle

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge