Hubert Vidal
Claude Bernard University Lyon 1
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hubert Vidal.
Diabetes | 1997
Didier Auboeuf; Jennifer Rieusset; Lluis Fajas; Paulette Vallier; Frering; J. P. Riou; Bart Staels; Johan Auwerx; Martine Laville; Hubert Vidal
Members of the peroxisome proliferator–activated receptor (PPAR) family might be involved in pathologies with altered lipid metabolism. They participate in the control of the expression of genes involved in lipid metabolism and adipocyte differentiation. In addition, thiazolidinediones improve insulin resistance in vivo by activating PPARγ. However, little is known regarding their tissue distribution and relative expression in humans. Using a quantitative and sensitive reverse transcription (RT)-competitive polymerase chain reaction (PCR) assay, we determined the distribution and relative mRNA expression of the four PPARs (α, β, γ1, and γ2) and liver X receptor-α (LXRα) in the main tissues implicated in lipid metabolism. PPARα and LXRα were mainly expressed in liver, while PPARγ1 predominated in adipose tissue and large intestine. We found that PPARγ2 mRNA was a minor isoform, even in adipose tissue, thus causing question of its role in humans. PPARβ mRNA was present in all the tissues tested at low levels. In addition, PPARγ mRNA was barely detectable in skeletal muscle, suggesting that improvement of insulin resistance with thiazolidinediones may not result from a direct effect of these agents on PPARγ in muscle. Obesity and NIDDM were not associated with change in PPARs and LXRα expression in adipose tissue. The mRNA levels of PPARγ1, the predominant form in adipocytes, did not correlate with BMI, leptin mRNA levels, or fasting insulinemia in 29 subjects with various degrees of obesity. These results indicated that obesity is not associated with alteration in PPAR gene expression in abdominal subcutaneous adipose tissue in humans.
Journal of Clinical Investigation | 2008
Charlotte Bonnard; Annie Durand; Simone Peyrol; Emilie Chanseaume; Marie-Agnès Chauvin; Béatrice Morio; Hubert Vidal; Jennifer Rieusset
Mitochondrial dysfunction in skeletal muscle has been implicated in the development of type 2 diabetes. However, whether these changes are a cause or a consequence of insulin resistance is not clear. We investigated the structure and function of muscle mitochondria during the development of insulin resistance and progression to diabetes in mice fed a high-fat, high-sucrose diet. Although 1 month of high-fat, high-sucrose diet feeding was sufficient to induce glucose intolerance, mice showed no evidence of mitochondrial dysfunction at this stage. However, an extended diet intervention induced a diabetic state in which we observed altered mitochondrial biogenesis, structure, and function in muscle tissue. We assessed the role of oxidative stress in the development of these mitochondrial abnormalities and found that diet-induced diabetic mice had an increase in ROS production in skeletal muscle. In addition, ROS production was associated with mitochondrial alterations in the muscle of hyperglycemic streptozotocin-treated mice, and normalization of glycemia or antioxidant treatment decreased muscle ROS production and restored mitochondrial integrity. Glucose- or lipid-induced ROS production resulted in mitochondrial alterations in muscle cells in vitro, and these effects were blocked by antioxidant treatment. These data suggest that mitochondrial alterations do not precede the onset of insulin resistance and result from increased ROS production in muscle in diet-induced diabetic mice.
The FASEB Journal | 2004
Karine Clément; Nathalie Viguerie; Christine Poitou; Claire Carette; Véronique Pelloux; Cyrile Anne Curat; Audrey Sicard; Sophie Rome; Arriel Benis; Jean Daniel Zucker; Hubert Vidal; Martine Laville; Gregory S. Barsh; Arnaud Basdevant; Vladimir Stich; Raffaella Cancello; Dominique Langin
Adipose tissue produces inflammation and immunity molecules suspected to be involved in obesity‐related complications. The pattern of expression and the nutritional regulation of these molecules in humans are poorly understood. We analyzed the gene expression profiles of subcutaneous white adipose tissue from 29 obese subjects during very low calorie diet (VLCD) using cDNA microarray and reverse transcription quantitative PCR. The patterns of expression were compared with that of 17 non‐obese subjects. We determined whether the regulated genes were expressed in adipocytes or stromavascular fraction cells. Gene expression profiling identified 100 inflammation‐related transcripts that are regulated in obese individuals when eating a 28 day VLCD but not a 2 day VLCD. Cluster analysis showed that the pattern of gene expression in obese subjects after 28 day VLCD was closer to the profile of lean subjects than to the pattern of obese subjects before VLCD. Weight loss improves the inflammatory profile of obese subjects through a decrease of proinflammatory factors and an increase of anti‐inflammatory molecules. The genes are expressed mostly in the stromavascular fraction of adipose tissue, which is shown to contain numerous macrophages. The beneficial effect of weight loss on obesity‐related complications may be associated with the modification of the inflammatory profile in adipose tissue.— Clément, K., Viguerie, N., Poitou, C., Carette, C., Pelloux, V., Curat, C. A., Sicard, A., Rome, S., Benis, A., Zucker, J.‐D., Vidal, H., Laville, M., Barsh, G. S., Basdevant, A., Stich, V., Cancello R., Langin, D. Weight loss regulates inflammation‐related genes in white adipose tissue of obese subjects. FASEB J. 18, 1657–1669 (2004)
Diabetes | 1998
Anne-Marie Lefebvre; M Laville; Nathalie Vega; J. P. Riou; L van Gaal; Johan Auwerx; Hubert Vidal
Intra-abdominal and subcutaneous adipose tissue display important metabolic differences that underlie the association of visceral, but not subcutaneous, fat with obesity-related cardiovascular and metabolic problems. Because the molecular mechanisms contributing to these differences are not yet defined, we compared by reverse transcription-polymerase chain reaction the expression of 15 mRNAs that encode proteins of known importance in adipocyte function in paired omental and subcutaneous abdominal biopsies. No difference in mRNA expression between omental and subcutaneous adipose tissue was observed for hormone sensitive lipase, lipoprotein lipase, 6-phosphofructo-1-kinase, insulin receptor substrate 1, p85α regulatory subunit of phosphatidylinositol-3-kinase, and Rad. Total amount of insulin receptor expression was significantly higher in omental adipose tissue. Most of this increase was accounted for by expression of the differentially spliced insulin receptor lacking exon 11, which is considered to transmit the insulin signal less efficiently than the insulin receptor with exon 11. Perhaps consistent with a less efficient insulin signaling, a twofold reduction in GLUT4, glycogen synthase, and leptin mRNA expression was observed in omental adipose tissue. Finally peroxisome proliferator activated receptor-γ (PPAR-γ) mRNA levels were significantly lower in visceral adipose tissue in subjects with a BMI <30 kg/m2, but not in obese subjects, indicating that relative PPAR-γ expression is increased in omental fat in obesity. This suggests that altered expression of PPAR-γ might play a role in adipose tissue distribution and expansion.
Journal of Clinical Investigation | 1997
Laurence Millet; Hubert Vidal; Fabrizio Andreelli; Dominique Larrouy; J. P. Riou; D Ricquier; M. Laville; Dominique Langin
Uncoupling protein-2 and -3 (UCP2 and UCP3) are mitochondrial proteins that show high sequence homology with the brown adipocyte-specific UCP1. UCP1 induces heat production by uncoupling respiration from ATP synthesis. UCP2 is widely expressed in human tissues, whereas UCP3 expression seems restricted to skeletal muscle, an important site of thermogenesis in humans. We have investigated the regulation of UCP2 and UCP3 gene expression in skeletal muscle and adipose tissue from lean and obese humans. UCP2 and -3 mRNA levels were not correlated with body mass index (BMI) in skeletal muscle, but a positive correlation (r = 0.55, P < 0.01, n = 22) was found between UCP2 mRNA level in adipose tissue and BMI. The effect of fasting was investigated in eight lean and six obese subjects maintained on a hypocaloric diet (1,045 kJ/d) for 5 d. Calorie restriction induced a similar 2-2.5-fold increase in UCP2 and -3 mRNA levels in lean and obese subjects. To study the effect of insulin on UCP gene expression, six lean and five obese subjects underwent a 3-h euglycemic hyperinsulinemic clamp. Insulin infusion did not modify UCP2 and -3 mRNA levels. In conclusion, the similar induction of gene expression observed during fasting in lean and obese subjects shows that there is no major alteration of UCP2 and -3 gene regulation in adipose tissue and skeletal muscle of obese subjects. The increase in UCP2 and -3 mRNA levels suggests a role for these proteins in the metabolic adaptation to fasting.
Biochimica et Biophysica Acta | 2000
Eric Dusserre; Philippe Moulin; Hubert Vidal
We have investigated the difference in gene expression of six proteins secreted by adipocytes in paired biopsies from visceral and abdominal subcutaneous adipose tissue in nine individuals with various degrees of obesity. The mRNAs levels of leptin, TNFalpha, angiotensinogen, acylation stimulating protein (ASP), cholesterol ester transfer protein (CETP) and phospholipid transfer protein (PLTP) were quantified by RT-competitive PCR. ASP and angiotensinogen mRNA levels were higher in the visceral fat, whereas the mRNA levels of leptin and CETP were higher in the subcutaneous depot. TNFalpha mRNA expression was similar in the two sites. For angiotensinogen, the difference was more pronounced in the subjects with body mass index (BMI) lower than 30 kg/m(2) whereas for ASP, CETP and leptin, the difference was observed regardless the BMI of the subjects. PLTP mRNA levels in subcutaneous, but not in the visceral, adipose tissue were positively related to the BMI of the subjects. These results strongly suggest that visceral and subcutaneous adipocytes may have different properties in the production of bioactive molecules.
Environmental Health Perspectives | 2009
Jérôme Ruzzin; Rasmus Koefoed Petersen; Lise Madsen; Erik-Jan Lock; Haldis H. Lillefosse; Tao Ma; Sandra Pesenti; Si Brask Sonne; Troels Torben Marstrand; Marian Kjellevold Malde; Zhen-Yu Du; Carine Chavey; Lluis Fajas; Anne-Katrine Lundebye; Christian Lehn Brand; Hubert Vidal; Karsten Kristiansen; Livar Frøyland
Background The incidence of the insulin resistance syndrome has increased at an alarming rate worldwide, creating a serious challenge to public health care in the 21st century. Recently, epidemiological studies have associated the prevalence of type 2 diabetes with elevated body burdens of persistent organic pollutants (POPs). However, experimental evidence demonstrating a causal link between POPs and the development of insulin resistance is lacking. Objective We investigated whether exposure to POPs contributes to insulin resistance and metabolic disorders. Methods Sprague-Dawley rats were exposed for 28 days to lipophilic POPs through the consumption of a high-fat diet containing either refined or crude fish oil obtained from farmed Atlantic salmon. In addition, differentiated adipocytes were exposed to several POP mixtures that mimicked the relative abundance of organic pollutants present in crude salmon oil. We measured body weight, whole-body insulin sensitivity, POP accumulation, lipid and glucose homeostasis, and gene expression and we performed microarray analysis. Results Adult male rats exposed to crude, but not refined, salmon oil developed insulin resistance, abdominal obesity, and hepatosteatosis. The contribution of POPs to insulin resistance was confirmed in cultured adipocytes where POPs, especially organochlorine pesticides, led to robust inhibition of insulin action. Moreover, POPs induced down-regulation of insulin-induced gene-1 (Insig-1) and Lpin1, two master regulators of lipid homeostasis. Conclusion Our findings provide evidence that exposure to POPs commonly present in food chains leads to insulin resistance and associated metabolic disorders.
Journal of Clinical Investigation | 1996
Hubert Vidal; Didier Auboeuf; P De Vos; Bart Staels; J. P. Riou; Johan Auwerx; M. Laville
The regulation of ob gene expression in abdominal subcutaneous adipose tissue was investigated using a reverse transcription-competitive PCR method to quantify the mRNA level of leptin. Leptin mRNA level was highly correlated with the body mass index of 26 subjects (12 lean, 7 non-insulin-dependent diabetic, and 7 obese patients). The effect of fasting on ob gene expression was investigated in 10 subjects maintained on a hypocaloric diet (1045 KJ/d) for 5 d. While their metabolic parameters significantly changed (decrease in insulinemia, glycemia, and resting metabolic rate and increase in plasma ketone bodies), the caloric restriction did not modify the leptin mRNA level in the adipose tissue. To verify whether insulin regulates ob gene expression, six lean subjects underwent a 3-h euglycemic hyperinsulinemic (846 +/- 138 pmol/liter) clamp. Leptin and Glut 4 mRNA levels were quantified in adipose tissue biopsies taken before and at the end of the clamp. Insulin infusion produced a significant threefold increase in Glut 4 mRNA while leptin mRNA was not affected. It is concluded that ob gene expression is not acutely regulated by insulin or by metabolic factors related to fasting in human abdominal subcutaneous adipose tissue.
Journal of Nutritional Biochemistry | 2011
Fabienne Laugerette; Cécile Vors; Alain Géloën; Marie-Agnès Chauvin; Christophe O. Soulage; Stéphanie Lambert-Porcheron; Noël Peretti; M. Alligier; Rémy Burcelin; Martine Laville; Hubert Vidal; Marie-Caroline Michalski
Low-grade inflammation is a risk factor for the onset of atherosclerosis. Little is known about the involvement of endotoxin absorption from the gut during the digestion of lipids. In the present study, we first investigated in humans the impact of a mixed meal containing dispersed lipids on postprandial endotoxemia and inflammation. We then investigated the effect of (i) oil emulsification in vivo in rats and (ii) fatty acid amounts in vitro using Caco-2 cells on postprandial endotoxemia. In humans, postprandial endotoxemia increased early after the meal. Moreover, we evidenced that the endotoxin receptor sCD14 increased during digestion and that chylomicrons could contribute to absorbed endotoxin transport. This could explain the significant peak of inflammatory cytokine IL-6 that we observed 2 h after the mixed meal. Interestingly, in rats, the emulsion led to both higher endotoxemia and hypertriglyceridemia than oil and compared to a control saline load. In vitro, incubation of Caco-2 cells with increasing fatty acid concentrations enhanced epithelial absorption of endotoxin. To our knowledge, this is the first study evidencing in healthy humans that, following a mixed meal containing lipids, increased endotoxemia is associated with raised sCD14 and a peak of IL-6. On a repeated basis, this may thus be a triggering cascade for the onset of atherosclerosis. In this respect, optimizing both dietary fat amount and structure could be a possible strategy to limit such low-grade endotoxemia and inflammation by the control of postprandial lipemia.
Biochimica et Biophysica Acta | 2009
Sara Fröjdö; Hubert Vidal; Luciano Pirola
A generally accepted view posits that insulin resistant condition in type 2 diabetes is caused by defects at one or several levels of the insulin-signaling cascade in skeletal muscles, adipose tissue and liver, that quantitatively constitute the bulk of the insulin-responsive tissues. Hence, the gradual uncovering of the biochemical events defining the intracellular signaling of insulin has been quickly followed by clinical studies on humans attempting to define the molecular defect(s) responsible for the establishment of the insulin resistant state. While the existence of molecular defects within the insulin signal transduction machinery is undisputed, contrasting data exist on what is the principal molecular alteration leading to insulin resistance. Such discrepancies in the literature may depend on: 1) different subject characteristics, 2) methodological differences 3) small cohorts of subjects, and - not least - 4) intrinsic limitations in studying every detail of the insulin signaling cascade. Here, we review the studies on humans exploring the defects of the insulin signaling cascade generated by insulin resistance and type 2 diabetes, focusing on muscle and adipose tissue - which account for most of the glucose disposal capacity of the body - with focus on the unresolved discrepancies present in the literature.