Hubert Wagner
Jagiellonian University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hubert Wagner.
The Visual Computer | 2012
David Günther; Jan Reininghaus; Hubert Wagner; Ingrid Hotz
We propose an efficient algorithm that computes the Morse–Smale complex for 3D gray-scale images. This complex allows for an efficient computation of persistent homology since it is, in general, much smaller than the input data but still contains all necessary information. Our method improves a recently proposed algorithm to extract the Morse–Smale complex in terms of memory consumption and running time. It also allows for a parallel computation of the complex. The computational complexity of the Morse–Smale complex extraction solely depends on the topological complexity of the input data. The persistence is then computed using the Morse–Smale complex by applying an existing algorithm with a good practical running time. We demonstrate that our method allows for the computation of persistent homology for large data on commodity hardware.
Archive | 2012
Hubert Wagner; Chao Chen; Erald Vuçini
In this paper we present an efficient framework for computation of persistent homology of cubical data in arbitrary dimensions. An existing algorithm using simplicial complexes is adapted to the setting of cubical complexes. The proposed approach enables efficient application of persistent homology in domains where the data is naturally given in a cubical form. By avoiding triangulation of the data, we significantly reduce the size of the complex. We also present a data-structure designed to compactly store and quickly manipulate cubical complexes. By means of numerical experiments, we show high speed and memory efficiency of our approach. We compare our framework to other available implementations, showing its superiority. Finally, we report performance on selected 3D and 4D data-sets.
computational topology in image context | 2012
Hubert Wagner; Paweł Dłotko; Marian Mrozek
In this paper we present our ongoing research on applying computational topology to analysis of structure of similarities within a collection of text documents. Our work is on the fringe between text mining and computational topology, and we describe techniques from each of these disciplines. We transform text documents to the so-called vector space model, which is often used in text mining. This representation is suitable for topological computations. We compute homology, using discrete Morse theory, and persistent homology of the Flag complex built from the point-cloud representing the input data. Since the space is high-dimensional, many difficulties appear. We describe how we tackle these problems and point out what challenges are still to be solved.
international congress on mathematical software | 2014
Ulrich Bauer; Michael Kerber; Jan Reininghaus; Hubert Wagner
PHAT is a C++ library for the computation of persistent homology by matrix reduction. We aim for a simple generic design that decouples algorithms from data structures without sacrificing efficiency or user-friendliness. This makes PHAT a versatile platform for experimenting with algorithmic ideas and comparing them to state of the art implementations.
Journal of Symbolic Computation | 2017
Ulrich Bauer; Michael Kerber; Jan Reininghaus; Hubert Wagner
Phat is an open-source C++ library for the computation of persistent homology by matrix reduction, targeted towards developers of software for topological data analysis. We aim for a simple generic design that decouples algorithms from data structures without sacrificing efficiency or user-friendliness. We provide numerous different reduction strategies as well as data types to store and manipulate the boundary matrix. We compare the different combinations through extensive experimental evaluation and identify optimization techniques that work well in practical situations. We also compare our software with various other publicly available libraries for persistent homology.
brazilian symposium on computer graphics and image processing | 2011
David Günther; Jan Reininghaus; Ingrid Hotz; Hubert Wagner
We propose a memory-efficient method that computes persistent homology for 3D gray-scale images. The basic idea is to compute the persistence of the induced Morse-Smale complex. Since in practice this complex is much smaller than the input data, significantly less memory is required for the subsequent computations. We propose a novel algorithm that efficiently extracts the Morse-Smale complex based on algorithms from discrete Morse theory. The proposed algorithm is thereby optimal with a computational complexity of O(n2). The persistence is then computed using the Morse-Smale complex by applying an existing algorithm with a good practical running time. We demonstrate that our method allows for the computation of persistent homology for large data on commodity hardware.
Computer Vision and Image Understanding | 2014
Hubert Wagner; Paweł Dłotko
In this paper we present ideas from computational topology, applicable in analysis of point cloud data. In particular, the point cloud can represent a feature space of a collection of objects such as images or text documents. Computing persistent homology reveals the global structure of similarities between the data. Furthermore, we argue that it is essential to incorporate higher-degree relationships between objects. Finally, we show that new computational topology algorithms expose much better practical performance compared to standard techniques.
symposium on computational geometry | 2017
Herbert Edelsbrunner; Hubert Wagner
Given a finite set in a metric space, the topological analysis generalizes hierarchical clustering using a 1-parameter family of homology groups to quantify connectivity in all dimensions. The connectivity is compactly described by the persistence diagram. One limitation of the current framework is the reliance on metric distances, whereas in many practical applications objects are compared by non-metric dissimilarity measures. Examples are the Kullback-Leibler divergence, which is commonly used for comparing text and images, and the Itakura-Saito divergence, popular for speech and sound. These are two members of the broad family of dissimilarities called Bregman divergences. We show that the framework of topological data analysis can be extended to general Bregman divergences, widening the scope of possible applications. In particular, we prove that appropriately generalized Cech and Delaunay (alpha) complexes capture the correct homotopy type, namely that of the corresponding union of Bregman balls. Consequently, their filtrations give the correct persistence diagram, namely the one generated by the uniformly growing Bregman balls. Moreover, we show that unlike the metric setting, the filtration of Vietoris-Rips complexes may fail to approximate the persistence diagram. We propose algorithms to compute the thus generalized Cech, Vietoris-Rips and Delaunay complexes and experimentally test their efficiency. Lastly, we explain their surprisingly good performance by making a connection with discrete Morse theory.
computer analysis of images and patterns | 2017
Teresa Heiss; Hubert Wagner
We present an efficient algorithm to compute Euler characteristic curves of gray scale images of arbitrary dimension. In various applications the Euler characteristic curve is used as a descriptor of an image. Our algorithm is the first streaming algorithm for Euler characteristic curves. The usage of streaming removes the necessity to store the entire image in RAM. Experiments show that our implementation handles terabyte scale images on commodity hardware. Due to lock-free parallelism, it scales well with the number of processor cores. Our software---CHUNKYEuler---is available as open source on Bitbucket. Additionally, we put the concept of the Euler characteristic curve in the wider context of computational topology. In particular, we explain the connection with persistence diagrams.
computer analysis of images and patterns | 2011
Paweł Dłotko; Walter G. Kropatsch; Hubert Wagner
In this paper, we investigate the problem of analyzing the shape of obstacle-avoiding paths in a space. Given a d-dimensional space with holes, representing obstacles, we ask if certain paths are equivalent, informally if one path can be continuously deformed into another, within this space. Algebraic topology is used to distinguish between topologically different paths. A compact yet complete signature of a path is constructed, based on cohomology theory. Possible applications include assisted living, residential, security and environmental monitoring. Numerical results will be presented in the final version of this paper.