Hubing Shi
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hubing Shi.
Nature | 2010
Ramin Nazarian; Hubing Shi; Qi Wang; Xiangju Kong; Richard C. Koya; Hane Lee; Zugen Chen; Mi Kyung Lee; Narsis Attar; Hooman Sazegar; Thinle Chodon; Stanley F. Nelson; Grant A. McArthur; Jeffrey A. Sosman; Antoni Ribas; Roger S. Lo
Activating B-RAF(V600E) (also known as BRAF) kinase mutations occur in ∼7% of human malignancies and ∼60% of melanomas. Early clinical experience with a novel class I RAF-selective inhibitor, PLX4032, demonstrated an unprecedented 80% anti-tumour response rate among patients with B-RAF(V600E)-positive melanomas, but acquired drug resistance frequently develops after initial responses. Hypotheses for mechanisms of acquired resistance to B-RAF inhibition include secondary mutations in B-RAF(V600E), MAPK reactivation, and activation of alternative survival pathways. Here we show that acquired resistance to PLX4032 develops by mutually exclusive PDGFRβ (also known as PDGFRB) upregulation or N-RAS (also known as NRAS) mutations but not through secondary mutations in B-RAF(V600E). We used PLX4032-resistant sub-lines artificially derived from B-RAF(V600E)-positive melanoma cell lines and validated key findings in PLX4032-resistant tumours and tumour-matched, short-term cultures from clinical trial patients. Induction of PDGFRβ RNA, protein and tyrosine phosphorylation emerged as a dominant feature of acquired PLX4032 resistance in a subset of melanoma sub-lines, patient-derived biopsies and short-term cultures. PDGFRβ-upregulated tumour cells have low activated RAS levels and, when treated with PLX4032, do not reactivate the MAPK pathway significantly. In another subset, high levels of activated N-RAS resulting from mutations lead to significant MAPK pathway reactivation upon PLX4032 treatment. Knockdown of PDGFRβ or N-RAS reduced growth of the respective PLX4032-resistant subsets. Overexpression of PDGFRβ or N-RAS(Q61K) conferred PLX4032 resistance to PLX4032-sensitive parental cell lines. Importantly, MAPK reactivation predicts MEK inhibitor sensitivity. Thus, melanomas escape B-RAF(V600E) targeting not through secondary B-RAF(V600E) mutations but via receptor tyrosine kinase (RTK)-mediated activation of alternative survival pathway(s) or activated RAS-mediated reactivation of the MAPK pathway, suggesting additional therapeutic strategies.
Nature | 2011
Poulikos I. Poulikakos; Yogindra Persaud; Manickam Janakiraman; Xiangju Kong; Charles Ng; Gatien Moriceau; Hubing Shi; Mohammad Atefi; Bjoern Titz; May Tal Gabay; Maayan Salton; Kimberly B. Dahlman; Madhavi Tadi; Jennifer A. Wargo; Keith T. Flaherty; Mark C. Kelley; Tom Misteli; Paul B. Chapman; Jeffrey A. Sosman; Thomas G. Graeber; Antoni Ribas; Roger S. Lo; Neal Rosen; David B. Solit
Activated RAS promotes dimerization of members of the RAF kinase family. ATP-competitive RAF inhibitors activate ERK signalling by transactivating RAF dimers. In melanomas with mutant BRAF(V600E), levels of RAS activation are low and these drugs bind to BRAF(V600E) monomers and inhibit their activity. This tumour-specific inhibition of ERK signalling results in a broad therapeutic index and RAF inhibitors have remarkable clinical activity in patients with melanomas that harbour mutant BRAF(V600E). However, resistance invariably develops. Here, we identify a new resistance mechanism. We find that a subset of cells resistant to vemurafenib (PLX4032, RG7204) express a 61-kDa variant form of BRAF(V600E), p61BRAF(V600E), which lacks exons 4–8, a region that encompasses the RAS-binding domain. p61BRAF(V600E) shows enhanced dimerization in cells with low levels of RAS activation, as compared to full-length BRAF(V600E). In cells in which p61BRAF(V600E) is expressed endogenously or ectopically, ERK signalling is resistant to the RAF inhibitor. Moreover, a mutation that abolishes the dimerization of p61BRAF(V600E) restores its sensitivity to vemurafenib. Finally, we identified BRAF(V600E) splicing variants lacking the RAS-binding domain in the tumours of six of nineteen patients with acquired resistance to vemurafenib. These data support the model that inhibition of ERK signalling by RAF inhibitors is dependent on levels of RAS–GTP too low to support RAF dimerization and identify a novel mechanism of acquired resistance in patients: expression of splicing isoforms of BRAF(V600E) that dimerize in a RAS-independent manner.
Cancer Discovery | 2014
Hubing Shi; Willy Hugo; Xiangju Kong; Aayoung Hong; Richard C. Koya; Gatien Moriceau; Thinle Chodon; Rongqing Guo; Douglas B. Johnson; Kimberly B. Dahlman; Mark C. Kelley; Richard Kefford; Bartosz Chmielowski; John A. Glaspy; Jeffrey A. Sosman; Nicolas van Baren; Antoni Ribas; Roger S. Lo
BRAF inhibitors elicit rapid antitumor responses in the majority of patients with BRAF(V600)-mutant melanoma, but acquired drug resistance is almost universal. We sought to identify the core resistance pathways and the extent of tumor heterogeneity during disease progression. We show that mitogen-activated protein kinase reactivation mechanisms were detected among 70% of disease-progressive tissues, with RAS mutations, mutant BRAF amplification, and alternative splicing being most common. We also detected PI3K-PTEN-AKT-upregulating genetic alterations among 22% of progressive melanomas. Distinct molecular lesions in both core drug escape pathways were commonly detected concurrently in the same tumor or among multiple tumors from the same patient. Beyond harboring extensively heterogeneous resistance mechanisms, melanoma regrowth emerging from BRAF inhibitor selection displayed branched evolution marked by altered mutational spectra/signatures and increased fitness. Thus, melanoma genomic heterogeneity contributes significantly to BRAF inhibitor treatment failure, implying upfront, cotargeting of two core pathways as an essential strategy for durable responses.
Nature Communications | 2012
Hubing Shi; Gatien Moriceau; Xiangju Kong; Mi Kyung Lee; Hane Lee; Richard C. Koya; Charles Ng; Thinle Chodon; Richard A. Scolyer; Kimberly B. Dahlman; Jeffrey A. Sosman; Richard F. Kefford; Stanley F. Nelson; Antoni Ribas; Roger S. Lo
The development of acquired drug resistance hampers the long-term success of B-RAF inhibitor (B-RAFi) therapy for melanoma patients. Here we show V600EB-RAF copy number gain as a mechanism of acquired B-RAFi resistance in four out of twenty (20%) patients treated with B-RAFi. In cell lines, V600EB-RAF over-expression and knockdown conferred B-RAFi resistance and sensitivity, respectively. In V600EB-RAF amplification-driven (vs. mutant N-RAS-driven) B-RAFi resistance, ERK reactivation is saturable, with higher doses of vemurafenib down-regulating pERK and re-sensitizing melanoma cells to B-RAFi. These two mechanisms of ERK reactivation are sensitive to the MEK1/2 inhibitor AZD6244/selumetinib or its combination with the B-RAFi vemurafenib. In contrast to mutant N-RAS-mediated V600EB-RAF bypass, which is sensitive to C-RAF knockdown, V600EB-RAF amplification-mediated resistance functions largely independently of C-RAF. Thus, alternative clinical strategies may potentially overcome distinct modes of ERK reactivation underlying acquired B-RAFi resistance in melanoma.
Nature | 2015
Anna C. Obenauf; Yilong Zou; Andrew L. Ji; Sakari Vanharanta; Weiping Shu; Hubing Shi; Xiangju Kong; Marcus C. Bosenberg; Thomas Wiesner; Neal Rosen; Roger S. Lo; Joan Massagué
Drug resistance invariably limits the clinical efficacy of targeted therapy with kinase inhibitors against cancer. Here we show that targeted therapy with BRAF, ALK or EGFR kinase inhibitors induces a complex network of secreted signals in drug-stressed human and mouse melanoma and human lung adenocarcinoma cells. This therapy-induced secretome stimulates the outgrowth, dissemination and metastasis of drug-resistant cancer cell clones and supports the survival of drug-sensitive cancer cells, contributing to incomplete tumour regression. The tumour-promoting secretome of melanoma cells treated with the kinase inhibitor vemurafenib is driven by downregulation of the transcription factor FRA1. In situ transcriptome analysis of drug-resistant melanoma cells responding to the regressing tumour microenvironment revealed hyperactivation of several signalling pathways, most prominently the AKT pathway. Dual inhibition of RAF and the PI(3)K/AKT/mTOR intracellular signalling pathways blunted the outgrowth of the drug-resistant cell population in BRAF mutant human melanoma, suggesting this combination therapy as a strategy against tumour relapse. Thus, therapeutic inhibition of oncogenic drivers induces vast secretome changes in drug-sensitive cancer cells, paradoxically establishing a tumour microenvironment that supports the expansion of drug-resistant clones, but is susceptible to combination therapy.
Nature Medicine | 2012
Agnieszka Gembarska; Flavie Luciani; Clare G Fedele; Elisabeth A. Russell; Michael Dewaele; Stephanie Villar; Aleksandra Zwolinska; Sue Haupt; Job de Lange; Dana Yip; James S. Goydos; Jody J. Haigh; Ygal Haupt; Lionel Larue; Aart G. Jochemsen; Hubing Shi; Gatien Moriceau; Roger S. Lo; Ghanem Elias Ghanem; Mark Shackleton; Federico Bernal; Jean-Christophe Marine
The inactivation of the p53 tumor suppressor pathway, which often occurs through mutations in TP53 (encoding tumor protein 53) is a common step in human cancer. However, in melanoma—a highly chemotherapy-resistant disease—TP53 mutations are rare, raising the possibility that this cancer uses alternative ways to overcome p53-mediated tumor suppression. Here we show that Mdm4 p53 binding protein homolog (MDM4), a negative regulator of p53, is upregulated in a substantial proportion (∼65%) of stage I–IV human melanomas and that melanocyte-specific Mdm4 overexpression enhanced tumorigenesis in a mouse model of melanoma induced by the oncogene Nras. MDM4 promotes the survival of human metastatic melanoma by antagonizing p53 proapoptotic function. Notably, inhibition of the MDM4-p53 interaction restored p53 function in melanoma cells, resulting in increased sensitivity to cytotoxic chemotherapy and to inhibitors of the BRAF (V600E) oncogene. Our results identify MDM4 as a key determinant of impaired p53 function in human melanoma and designate MDM4 as a promising target for antimelanoma combination therapy.
Cell | 2015
Willy Hugo; Hubing Shi; Lu Sun; Marco Piva; Chunying Song; Xiangju Kong; Gatien Moriceau; Aayoung Hong; Kimberly B. Dahlman; Douglas B. Johnson; Jeffrey A. Sosman; Antoni Ribas; Roger S. Lo
Clinically acquired resistance to MAPK inhibitor (MAPKi) therapies for melanoma cannot be fully explained by genomic mechanisms and may be accompanied by co-evolution of intra-tumoral immunity. We sought to discover non-genomic mechanisms of acquired resistance and dynamic immune compositions by a comparative, transcriptomic-methylomic analysis of patient-matched melanoma tumors biopsied before therapy and during disease progression. Transcriptomic alterations across resistant tumors were highly recurrent, in contrast to mutations, and were frequently correlated with differential methylation of tumor cell-intrinsic CpG sites. We identified in the tumor cell compartment supra-physiologic c-MET up-expression, infra-physiologic LEF1 down-expression and YAP1 signature enrichment as drivers of acquired resistance. Importantly, high intra-tumoral cytolytic T cell inflammation prior to MAPKi therapy preceded CD8 T cell deficiency/exhaustion and loss of antigen presentation in half of disease-progressive melanomas, suggesting cross-resistance to salvage anti-PD-1/PD-L1 immunotherapy. Thus, melanoma acquires MAPKi resistance with highly dynamic and recurrent non-genomic alterations and co-evolving intra-tumoral immunity.
Cancer Research | 2011
Hubing Shi; Xiangju Kong; Antoni Ribas; Roger S. Lo
(V600E)B-RAF mutation is found in 50% to 60% of melanomas, and the novel agents PLX4032/vemurafenib and GSK2118436 that inhibit the (V600E)B-RAF kinase achieve a remarkable clinical response rate. However, as might be expected, acquired clinical resistance to these agents arises in most melanoma patients. PLX4032/vemurafenib resistance that arises in vivo in tumor matched short-term cultures or in vitro in melanoma cell lines is not caused by acquisition of secondary mutations in (V600E)B-RAF but rather is caused by upregulating platelet-derived growth factor receptor β (PDGFRβ) or N-RAS which results in resistance or sensitivity to mitogen-activated protein (MAP)/extracellular signal-regulated (ERK; MEK) kinase inhibitors, respectively. In this study, we define a targeted combinatorial strategy to overcome PLX4032/vemurafenib resistance in melanoma cell lines or short-term culture where the resistance is driven by PDGFRβ upregulation, achieving synergistic growth inhibition and cytotoxicity. PDGFRβ-upregulated, PLX4032-resistant (PPRM) cell lines show dual phospho (p)-ERK and p-AKT upregulation, and their growth inhibitory responses to specific small molecule inhibitors correlated with p-ERK, p-AKT, and p-p70S6K levels. Coordinate inhibition of (V600E)B-RAF inhibition and the RTK-PI3K-AKT-mTORC axis led to functionally significant rebound signaling, illustrating a robust and dynamic network connectivity. Combined B-RAF, phosphoinositide 3-kinase (PI3K), and mTORC1/2 inhibition suppressed both immediate early and delayed compensatory signaling, resulting in a highly synergistic growth inhibitory response but less efficient cytotoxic response. In contrast, the combination of MEK1/2, PI3K, and mTORC1/2 inhibitors consistently triggered apoptosis in a highly efficient manner. Together, our findings offer a rational strategy to guide clinical testing in preidentified subsets of patients who relapse during treatment with (V600E)B-RAF inhibitors.
Process Biochemistry | 2004
H.F Diao; Xiao-yan Li; Ji-Dong Gu; Hubing Shi; Z.M Xie
Abstract Laboratory experiments were carried out to investigate the mechanisms of electrochemical (EC) disinfection of artificial wastewater contaminated by Escherichia coli culture. Comparative disinfection tests with chlorine, ozone and hydroxyl ( OH − ) radicals produced by the Fenton reaction were also conducted. It was demonstrated that the EC process was highly effective for wastewater disinfection. Investigation with scanning electron microscopy (SEM) showed different appearances of damage to in the surface morphology and structure of the cells after different forms of disinfection. Substantial leakage of intracellular materials was found for the E. coli cells after EC disinfection, which was also observed for the cells treated by the Fenton reaction. However, such cell lysis was noticeable to a less extent for the ozonated cells and hardly noticeable for the chlorinated cells. Electron microscopic examination suggested that the cells were likely inactivated during the EC process by the chemical products with an oxidising power similar to that of hydroxyl radicals and much stronger than that of chlorine. The SEM results support the hypothesis that the predominant killing action of EC disinfection is provided by high-energy intermediate EC products. Therefore, in addition to electro-chlorination, the great capacity of EC disinfection may be attributable to the generation of short-lived germicidal agents, such as free radicals.
Cancer Research | 2009
Yujie Huang; Nan Song; Yanping Ding; Shaopeng Yuan; Xuhui Li; Hongchen Cai; Hubing Shi; Yongzhang Luo
Before metastasis, certain organs have already been influenced by primary tumors. However, the exact alterations and regulatory mechanisms of the premetastatic organs remain poorly understood. Here, we report that, in the premetastatic stage, angiopoietin 2 (Angpt2), matrix metalloproteinase (MMP) 3, and MMP10 are up-regulated in the lung by primary B16/F10 tumor, which leads to the increased permeability of pulmonary vasculatures and extravasation of circulating tumor cells. Subsequent studies show that Angpt2, MMP3, and MMP10 have a synergistic effect on disrupting vascular integrity in both in vitro and in vivo models. Lentivirus-based in vivo RNA interference of Angpt2, MMP3, and MMP10 attenuates the pulmonary vascular permeability and suppresses the infiltration of myeloid cells in the premetastatic lung. Moreover, knocking down these factors significantly inhibits the spontaneous lung metastasis in the model by orthotopic implantation of MDA-MB-231-Luc-D3H1 cells in nude mice. Further investigations reveal that the malignancy of tumor cells is positively correlated with their capabilities to induce the expression of Angpt2, MMP3, and MMP10. Luciferase reporter assay and chromatin immunoprecipitation assay also suggest that transforming growth factor-beta1 and tumor necrosis factor-alpha signaling are involved in the regulation of these premetastatic factors. Our study shows that pulmonary vascular destabilization in the premetastatic phase promotes the extravasation of tumor cells and facilitates lung metastasis, which may provide potential targets for clinical prevention of metastasis.