Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huchen Zhou is active.

Publication


Featured researches published by Huchen Zhou.


Science | 2007

An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site

Fernando Rock; Weimin Mao; Anya Yaremchuk; Mikhail Tukalo; Thibaut Crépin; Huchen Zhou; Yong Kang Zhang; Vincent Hernandez; Tsutomu Akama; Stephen J. Baker; Jacob J. Plattner; Lucy Shapiro; Susan A. Martinis; Stephen J. Benkovic; Stephen Cusack; M. R. K. Alley

Aminoacyl–transfer RNA (tRNA) synthetases, which catalyze the attachment of the correct amino acid to its corresponding tRNA during translation of the genetic code, are proven antimicrobial drug targets. We show that the broad-spectrum antifungal 5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (AN2690), in development for the treatment of onychomycosis, inhibits yeast cytoplasmic leucyl-tRNA synthetase by formation of a stable tRNALeu-AN2690 adduct in the editing site of the enzyme. Adduct formation is mediated through the boron atom of AN2690 and the 2′- and 3′-oxygen atoms of tRNAs3′-terminal adenosine. The trapping of enzyme-bound tRNALeu in the editing site prevents catalytic turnover, thus inhibiting synthesis of leucyl-tRNALeu and consequentially blocking protein synthesis. This result establishes the editing site as a bona fide target for aminoacyl-tRNA synthetase inhibitors.


Bioorganic & Medicinal Chemistry Letters | 2009

Discovery and structure–activity study of a novel benzoxaborole anti-inflammatory agent (AN2728) for the potential topical treatment of psoriasis and atopic dermatitis

Tsutomu Akama; Stephen J. Baker; Yong-Kang Zhang; Vincent Hernandez; Huchen Zhou; Virginia Sanders; Yvonne Freund; Richard Kimura; Kirk R. Maples; Jacob J. Plattner

A series of phenoxy benzoxaboroles were synthesized and screened for their inhibitory activity against PDE4 and cytokine release. 5-(4-Cyanophenoxy)-2,3-dihydro-1-hydroxy-2,1-benzoxaborole (AN2728) showed potent activity both in vitro and in vivo. This compound is now in clinical development for the topical treatment of psoriasis and being pursued for the topical treatment of atopic dermatitis.


Nature Chemical Biology | 2012

Adenanthin targets peroxiredoxin I and II to induce differentiation of leukemic cells

Chuan-Xu Liu; Qian-Qian Yin; Huchen Zhou; Ying-Li Wu; Jian-Xin Pu; Li Xia; Wei Liu; Xin Huang; Tao Jiang; Ming-Xuan Wu; Li-Cai He; Yaxue Zhao; Xiao-Lin Wang; Wei-Lie Xiao; Hongzhuan Chen; Qian Zhao; Ai-Wu Zhou; L.W. Wang; Han-Dong Sun; Guo-Qiang Chen

Peroxiredoxins (Prxs) are potential therapeutic targets for major diseases such as cancers. However, isotype-specific inhibitors remain to be developed. We report that adenanthin, a diterpenoid isolated from the leaves of Rabdosia adenantha, induces differentiation of acute promyelocytic leukemia (APL) cells. We show that adenanthin directly targets the conserved resolving cysteines of Prx I and Prx II and inhibits their peroxidase activities. Consequently, cellular H(2)O(2) is elevated, leading to the activation of extracellular signal-regulated kinases and increased transcription of CCAAT/enhancer-binding protein β, which contributes to adenanthin-induced differentiation. Adenanthin induces APL-like cell differentiation, represses tumor growth in vivo and prolongs the survival of mouse APL models that are sensitive and resistant to retinoic acid. Thus, adenanthin can serve as what is to our knowledge the first lead natural compound for the development of Prx I- and Prx II-targeted therapeutic agents, which may represent a promising approach to inducing differentiation of APL cells.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Small molecule targeting Cdc42–intersectin interaction disrupts Golgi organization and suppresses cell motility

Amy Friesland; Yaxue Zhao; Yan-Hua Chen; Lie Wang; Huchen Zhou; Qun Lu

Signaling through the Rho family of small GTPases has been intensely investigated for its crucial roles in a wide variety of human diseases. Although RhoA and Rac1 signaling pathways are frequently exploited with the aid of effective small molecule modulators, studies of the Cdc42 subclass have lagged because of a lack of such means. We have applied high-throughput in silico screening and identified compounds that are able to fit into the surface groove of Cdc42, which is critical for guanine nucleotide exchange factor binding. Based on the interaction between Cdc42 and intersectin (ITSN), a specific Cdc42 guanine nucleotide exchange factor, we discovered compounds that rendered ITSN-like interactions in the binding pocket. By using in vitro binding and imaging as well as biochemical and cell-based assays, we demonstrated that ZCL278 has emerged as a selective Cdc42 small molecule modulator that directly binds to Cdc42 and inhibits its functions. In Swiss 3T3 fibroblast cultures, ZCL278 abolished microspike formation and disrupted GM130-docked Golgi structures, two of the most prominent Cdc42-mediated subcellular events. ZCL278 reduces the perinuclear accumulation of active Cdc42 in contrast to NSC23766, a selective Rac inhibitor. ZCL278 suppresses Cdc42-mediated neuronal branching and growth cone dynamics as well as actin-based motility and migration in a metastatic prostate cancer cell line (i.e., PC-3) without disrupting cell viability. Thus, ZCL278 is a small molecule that specifically targets Cdc42–ITSN interaction and inhibits Cdc42-mediated cellular processes, thus providing a powerful tool for research of Cdc42 subclass of Rho GTPases in human pathogenesis, such as those of cancer and neurological disorders.


Current Medicinal Chemistry | 2009

Signaling Through Rho GTPase Pathway as Viable Drug Target

Qun Lu; Frank M. Longo; Huchen Zhou; Stephen M. Massa; Yan-Hua Chen

Signaling through the Rho family of small GTPases has been increasingly investigated for their involvement in a wide variety of diseases such as cardiovascular, pulmonary, and neurological disorders as well as cancer. Rho GTPases are a subfamily of the Ras superfamily proteins which play essential roles in a number of biological processes, especially in the regulation of cell shape change, cytokinesis, cell adhesion, and cell migration. Many of these processes demonstrate a common theme: the rapid and dynamic reorganization of actin cytoskeleton of which Rho signaling has now emerged as a major switch control. The involvement of dynamic changes of Rho GTPases in disease states underscores the need to produce effective inhibitors for their therapeutic applications. Fasudil and Y-27632, with many newer additions, are two classes of widely used chemical compounds that inhibit Rho kinase (ROCK), an important downstream effector of RhoA subfamily GTPases. These inhibitors have been successful in many preclinical studies, indicating the potential benefit of clinical Rho pathway inhibition. On the other hand, except for Rac1 inhibitor NSC23766, there are few effective inhibitors directly targeting Rho GTPases, likely due to the lack of optimal structural information on individual Rho-RhoGEF, Rho-RhoGAP, or Rho-RhoGDI interaction to achieve specificity. Recently, LM11A-31 and other derivatives of peptide mimetic ligands for p75 neurotrophin receptor (p75(NTR)) show promising effects upstream of Rho GTPase signaling in neuronal regeneration. CCG-1423, a chemical compound showing profiles of inhibiting downstream of RhoA, is a further attempt for the development of novel pharmacological tools to disrupt Rho signaling pathway in cancer. Because of a rapidly growing number of studies deciphering the role of the Rho proteins in many diseases, specific and potent pharmaceutical modulators of various steps of Rho GTPase signaling pathway are critically needed to target for therapeutic intervention in cardiovascular disease, neurological disorders, and cancer progression.


Journal of Biological Chemistry | 2009

Characterization of the Polyoxin Biosynthetic Gene Cluster from Streptomyces cacaoi and Engineered Production of Polyoxin H

Wenqing Chen; Tingting Huang; Xinyi He; Qingqing Meng; Delin You; Linquan Bai; Jialiang Li; Mingxuan Wu; Rui Li; Zhoujie Xie; Huchen Zhou; Xiufen Zhou; Huarong Tan; Zixin Deng

A gene cluster (pol) essential for the biosynthesis of polyoxin, a nucleoside antibiotic widely used for the control of phytopathogenic fungi, was cloned from Streptomyces cacaoi. A 46,066-bp region was sequenced, and 20 of 39 of the putative open reading frames were defined as necessary for polyoxin biosynthesis as evidenced by its production in a heterologous host, Streptomyces lividans TK24. The role of PolO and PolA in polyoxin synthesis was demonstrated by in vivo experiments, and their functions were unambiguously characterized as O-carbamoyltransferase and UMP-enolpyruvyltransferase, respectively, by in vitro experiments, which enabled the production of a modified compound differing slightly from that proposed earlier. These studies should provide a solid foundation for the elucidation of the molecular mechanisms for polyoxin biosynthesis, and set the stage for combinatorial biosynthesis using genes encoding different pathways for nucleoside antibiotics.


Journal of Medicinal Chemistry | 2012

Chalcone-benzoxaborole hybrid molecules as potent antitrypanosomal agents.

Zhitao Qiao; Qi Wang; Fenglong Zhang; Zhongli Wang; Tana Bowling; Bakela Nare; Robert Jacobs; Jiong Zhang; Dazhong Ding; Yangang Liu; Huchen Zhou

We report the novel chalcone-benzoxaborole hybrids and their structure-activity relationship against Trypanosoma brucei parasites. The 4-NH(2) derivative 29 and 3-OMe derivative 43 were found to have excellent potency. The synergistic 4-NH(2)-3-OMe compound 49 showed an IC(50) of 0.010 μg/mL and resulted in 100% survival and zero parasitemia in a murine infection model, which represents one of the most potent compounds discovered to date from the benzoxaborole class that inhibit T. brucei growth.


ACS Medicinal Chemistry Letters | 2010

Discovery of Novel Benzoxaborole-Based Potent Antitrypanosomal Agents

Dazhong Ding; Yaxue Zhao; Qingqing Meng; Dongsheng Xie; Bakela Nare; Daitao Chen; Cyrus J. Bacchi; Nigel Yarlett; Yong-Kang Zhang; Vincent Hernandez; Yi Xia; Yvonne Freund; Maha Hamadien Abdulla; Kean-Hooi Ang; Joseline Ratnam; James H. McKerrow; Robert Jacobs; Huchen Zhou; Jacob J. Plattner

We report the discovery of benzoxaborole antitrypanosomal agents and their structure-activity relationships on central linkage groups and different substitution patterns in the sulfur-linked series. The compounds showed in vitro growth inhibition IC50 values as low as 0.02 μg/mL and in vivo efficacy in acute murine infection models against Tryapnosoma brucei.


Journal of Medicinal Chemistry | 2011

Design, synthesis, and structure-activity relationship of Trypanosoma brucei leucyl-tRNA synthetase inhibitors as antitrypanosomal agents.

Dazhong Ding; Qingqing Meng; Guangwei Gao; Yaxue Zhao; Qing Wang; Bakela Nare; Robert Jacobs; Fernando Rock; M. R. K. Alley; Jacob J. Plattner; Guo-Qiang Chen; Dawei Li; Huchen Zhou

African trypanosomiasis, caused by the proto zoal pathogen Trypanosoma brucei (T. brucei), is one of the most neglected tropical diseases that are in great need of new drugs. We report the design and synthesis of T. brucei leucyl-tRNA synthetase (TbLeuRS) inhibitors and their structure--activity relationship. Benzoxaborole was used as the core structure and C(6) was modified to achieve improved affinity based on docking results that showed further binding space at this position. Indeed, compounds with C(7) substitutions showed diminished activity due to clash with the eukaryote specific I4ae helix while substitutions at C(6) gave enhanced affinity. TbLeuRS inhibitors with IC(50) as low as 1.6 μM were discovered, and the structure-activity relationship was discussed. The most potent enzyme inhibitors also showed excellent T. brucei parasite growth inhibition activity. This is the first time that TbLeuRS inhibitors are reported, and this study suggests that leucyl-tRNA synthetase (LeuRS) could be a potential target for antiparasitic drug development.


Bioorganic & Medicinal Chemistry Letters | 2012

Benzoxaborole antimalarial agents. Part 2: Discovery of fluoro-substituted 7-(2-carboxyethyl)-1,3-dihydro-1-hydroxy-2,1-benzoxaboroles

Yong-Kang Zhang; Jacob J. Plattner; Yvonne Freund; Eric E. Easom; Yasheen Zhou; Long Ye; Huchen Zhou; David Waterson; Francisco-Javier Gamo; Laura Sanz; Min Ge; Zhiya Li; Lingchao Li; Hailong Wang; Han Cui

A series of new boron-containing benzoxaborole compounds was designed and synthesized for a continuing structure-activity relationship (SAR) investigation to assess the antimalarial activity changes derived from side-chain structural variation, substituent modification on the benzene ring and removal of boron from five-membered oxaborole ring. This SAR study demonstrated that boron is required for the antimalarial activity, and discovered that three fluoro-substituted 7-(2-carboxyethyl)-1,3-dihydro-1-hydroxy-2,1-benzoxaboroles (9, 14 and 20) have excellent potencies (IC(50) 0.026-0.209 μM) against Plasmodium falciparum.

Collaboration


Dive into the Huchen Zhou's collaboration.

Top Co-Authors

Avatar

Qingqing Meng

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yaxue Zhao

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Dazhong Ding

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Guo-Qiang Chen

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Jiong Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yan-Hua Chen

East Carolina University

View shared research outputs
Top Co-Authors

Avatar

Dawei Li

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Linquan Bai

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Qing Wang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Ying-Li Wu

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge