Huchuan Lu
Dalian University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Huchuan Lu.
computer vision and pattern recognition | 2012
Xu Jia; Huchuan Lu; Ming-Hsuan Yang
Sparse representation has been applied to visual tracking by finding the best candidate with minimal reconstruction error using target templates. However most sparse representation based trackers only consider the holistic representation and do not make full use of the sparse coefficients to discriminate between the target and the background, and hence may fail with more possibility when there is similar object or occlusion in the scene. In this paper we develop a simple yet robust tracking method based on the structural local sparse appearance model. This representation exploits both partial information and spatial information of the target based on a novel alignment-pooling method. The similarity obtained by pooling across the local patches helps not only locate the target more accurately but also handle occlusion. In addition, we employ a template update strategy which combines incremental subspace learning and sparse representation. This strategy adapts the template to the appearance change of the target with less possibility of drifting and reduces the influence of the occluded target template as well. Both qualitative and quantitative evaluations on challenging benchmark image sequences demonstrate that the proposed tracking algorithm performs favorably against several state-of-the-art methods.
computer vision and pattern recognition | 2013
Chuan Yang; Huchuan Lu; Xiang Ruan; Ming-Hsuan Yang
Most existing bottom-up methods measure the foreground saliency of a pixel or region based on its contrast within a local context or the entire image, whereas a few methods focus on segmenting out background regions and thereby salient objects. Instead of considering the contrast between the salient objects and their surrounding regions, we consider both foreground and background cues in a different way. We rank the similarity of the image elements (pixels or regions) with foreground cues or background cues via graph-based manifold ranking. The saliency of the image elements is defined based on their relevances to the given seeds or queries. We represent the image as a close-loop graph with super pixels as nodes. These nodes are ranked based on the similarity to background and foreground queries, based on affinity matrices. Saliency detection is carried out in a two-stage scheme to extract background regions and foreground salient objects efficiently. Experimental results on two large benchmark databases demonstrate the proposed method performs well when against the state-of-the-art methods in terms of accuracy and speed. We also create a more difficult benchmark database containing 5,172 images to test the proposed saliency model and make this database publicly available with this paper for further studies in the saliency field.
computer vision and pattern recognition | 2012
Wei Zhong; Huchuan Lu; Ming-Hsuan Yang
In this paper we propose a robust object tracking algorithm using a collaborative model. As the main challenge for object tracking is to account for drastic appearance change, we propose a robust appearance model that exploits both holistic templates and local representations. We develop a sparsity-based discriminative classifier (SD-C) and a sparsity-based generative model (SGM). In the S-DC module, we introduce an effective method to compute the confidence value that assigns more weights to the foreground than the background. In the SGM module, we propose a novel histogram-based method that takes the spatial information of each patch into consideration with an occlusion handing scheme. Furthermore, the update scheme considers both the latest observations and the original template, thereby enabling the tracker to deal with appearance change effectively and alleviate the drift problem. Numerous experiments on various challenging videos demonstrate that the proposed tracker performs favorably against several state-of-the-art algorithms.
international conference on computer vision | 2011
Shu Wang; Huchuan Lu; Fan Yang; Ming-Hsuan Yang
While numerous algorithms have been proposed for object tracking with demonstrated success, it remains a challenging problem for a tracker to handle large change in scale, motion, shape deformation with occlusion. One of the main reasons is the lack of effective image representation to account for appearance variation. Most trackers use high-level appearance structure or low-level cues for representing and matching target objects. In this paper, we propose a tracking method from the perspective of mid-level vision with structural information captured in superpixels. We present a discriminative appearance model based on superpixels, thereby facilitating a tracker to distinguish the target and the background with mid-level cues. The tracking task is then formulated by computing a target-background confidence map, and obtaining the best candidate by maximum a posterior estimate. Experimental results demonstrate that our tracker is able to handle heavy occlusion and recover from drifts. In conjunction with online update, the proposed algorithm is shown to perform favorably against existing methods for object tracking.
international conference on computer vision | 2013
Xiaohui Li; Huchuan Lu; Xiang Ruan; Ming-Hsuan Yang
In this paper, we propose a visual saliency detection algorithm from the perspective of reconstruction errors. The image boundaries are first extracted via super pixels as likely cues for background templates, from which dense and sparse appearance models are constructed. For each image region, we first compute dense and sparse reconstruction errors. Second, the reconstruction errors are propagated based on the contexts obtained from K-means clustering. Third, pixel-level saliency is computed by an integration of multi-scale reconstruction errors and refined by an object-biased Gaussian model. We apply the Bayes formula to integrate saliency measures based on dense and sparse reconstruction errors. Experimental results show that the proposed algorithm performs favorably against seventeen state-of-the-art methods in terms of precision and recall. In addition, the proposed algorithm is demonstrated to be more effective in highlighting salient objects uniformly and robust to background noise.
IEEE Transactions on Image Processing | 2013
Dong Wang; Huchuan Lu; Ming-Hsuan Yang
Online object tracking is a challenging problem as it entails learning an effective model to account for appearance change caused by intrinsic and extrinsic factors. In this paper, we propose a novel online object tracking algorithm with sparse prototypes, which exploits both classic principal component analysis (PCA) algorithms with recent sparse representation schemes for learning effective appearance models. We introduce l1 regularization into the PCA reconstruction, and develop a novel algorithm to represent an object by sparse prototypes that account explicitly for data and noise. For tracking, objects are represented by the sparse prototypes learned online with update. In order to reduce tracking drift, we present a method that takes occlusion and motion blur into account rather than simply includes image observations for model update. Both qualitative and quantitative evaluations on challenging image sequences demonstrate that the proposed tracking algorithm performs favorably against several state-of-the-art methods.
international conference on computer vision | 2013
Bowen Jiang; Huchuan Lu; Chuan Yang; Ming-Hsuan Yang
In this paper, we formulate saliency detection via absorbing Markov chain on an image graph model. We jointly consider the appearance divergence and spatial distribution of salient objects and the background. The virtual boundary nodes are chosen as the absorbing nodes in a Markov chain and the absorbed time from each transient node to boundary absorbing nodes is computed. The absorbed time of transient node measures its global similarity with all absorbing nodes, and thus salient objects can be consistently separated from the background when the absorbed time is used as a metric. Since the time from transient node to absorbing nodes relies on the weights on the path and their spatial distance, the background region on the center of image may be salient. We further exploit the equilibrium distribution in an ergodic Markov chain to reduce the absorbed time in the long-range smooth background regions. Extensive experiments on four benchmark datasets demonstrate robustness and efficiency of the proposed method against the state-of-the-art methods.
international conference on computer vision | 2015
Lijun Wang; Wanli Ouyang; Xiaogang Wang; Huchuan Lu
We propose a new approach for general object tracking with fully convolutional neural network. Instead of treating convolutional neural network (CNN) as a black-box feature extractor, we conduct in-depth study on the properties of CNN features offline pre-trained on massive image data and classification task on ImageNet. The discoveries motivate the design of our tracking system. It is found that convolutional layers in different levels characterize the target from different perspectives. A top layer encodes more semantic features and serves as a category detector, while a lower layer carries more discriminative information and can better separate the target from distracters with similar appearance. Both layers are jointly used with a switch mechanism during tracking. It is also found that for a tracking target, only a subset of neurons are relevant. A feature map selection method is developed to remove noisy and irrelevant feature maps, which can reduce computation redundancy and improve tracking accuracy. Extensive evaluation on the widely used tracking benchmark [36] shows that the proposed tacker outperforms the state-of-the-art significantly.
IEEE Transactions on Image Processing | 2013
Yulin Xie; Huchuan Lu; Ming-Hsuan Yang
Visual saliency detection is a challenging problem in computer vision, but one of great importance and numerous applications. In this paper, we propose a novel model for bottom-up saliency within the Bayesian framework by exploiting low and mid level cues. In contrast to most existing methods that operate directly on low level cues, we propose an algorithm in which a coarse saliency region is first obtained via a convex hull of interest points. We also analyze the saliency information with mid level visual cues via superpixels. We present a Laplacian sparse subspace clustering method to group superpixels with local features, and analyze the results with respect to the coarse saliency region to compute the prior saliency map. We use the low level visual cues based on the convex hull to compute the observation likelihood, thereby facilitating inference of Bayesian saliency at each pixel. Extensive experiments on a large data set show that our Bayesian saliency model performs favorably against the state-of-the-art algorithms.
computer vision and pattern recognition | 2013
Dong Wang; Huchuan Lu; Ming-Hsuan Yang
In this paper, we propose a generative tracking method based on a novel robust linear regression algorithm. In contrast to existing methods, the proposed Least Soft-thresold Squares (LSS) algorithm models the error term with the Gaussian-Laplacian distribution, which can be solved efficiently. Based on maximum joint likelihood of parameters, we derive a LSS distance to measure the difference between an observation sample and the dictionary. Compared with the distance derived from ordinary least squares methods, the proposed metric is more effective in dealing with outliers. In addition, we present an update scheme to capture the appearance change of the tracked target and ensure that the model is properly updated. Experimental results on several challenging image sequences demonstrate that the proposed tracker achieves more favorable performance than the state-of-the-art methods.