Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hudson V. V. Tomé is active.

Publication


Featured researches published by Hudson V. V. Tomé.


PLOS ONE | 2012

Imidacloprid-Induced Impairment of Mushroom Bodies and Behavior of the Native Stingless Bee Melipona quadrifasciata anthidioides

Hudson V. V. Tomé; Gustavo Ferreira Martins; Maria Augusta Pereira Lima; Lucio Antonio de Oliveira Campos; Raul Narciso C. Guedes

Declines in pollinator colonies represent a worldwide concern. The widespread use of agricultural pesticides is recognized as a potential cause of these declines. Previous studies have examined the effects of neonicotinoid insecticides such as imidacloprid on pollinator colonies, but these investigations have mainly focused on adult honey bees. Native stingless bees (Hymenoptera: Apidae: Meliponinae) are key pollinators in neotropical areas and are threatened with extinction due to deforestation and pesticide use. Few studies have directly investigated the effects of pesticides on these pollinators. Furthermore, the existing impact studies did not address the issue of larval ingestion of contaminated pollen and nectar, which could potentially have dire consequences for the colony. Here, we assessed the effects of imidacloprid ingestion by stingless bee larvae on their survival, development, neuromorphology and adult walking behavior. Increasing doses of imidacloprid were added to the diet provided to individual worker larvae of the stingless bee Melipona quadrifasciata anthidioides throughout their development. Survival rates above 50% were only observed at insecticide doses lower than 0.0056 µg active ingredient (a.i.)/bee. No sublethal effect on body mass or developmental time was observed in the surviving insects, but the pesticide treatment negatively affected the development of mushroom bodies in the brain and impaired the walking behavior of newly emerged adult workers. Therefore, stingless bee larvae are particularly susceptible to imidacloprid, as it caused both high mortality and sublethal effects that impaired brain development and compromised mobility at the young adult stage. These findings demonstrate the lethal effects of imidacloprid on native stingless bees and provide evidence of novel serious sublethal effects that may compromise colony survival. The ecological and economic importance of neotropical stingless bees as pollinators, their susceptibility to insecticides and the vulnerability of their larvae to insecticide exposure emphasize the importance of studying these species.


Chemosphere | 2015

Spinosad in the native stingless bee Melipona quadrifasciata: Regrettable non-target toxicity of a bioinsecticide

Hudson V. V. Tomé; Wagner Faria Barbosa; Gustavo Ferreira Martins; Raul Narciso C. Guedes

The risks imposed by novel insecticides, mainly bioinsecticides, are largely unknown despite their increased use and their perceived environmental safety, which is based on their natural origin. Furthermore, unlike honeybees, native pollinator species have received little attention. In the present study, the lethal and sublethal effects of the neonicotinoid imidacloprid and the bioinsecticide spinosad were assessed in the stingless bee species Meliponaquadrifasciata, an important native pollinator in the Neotropical region. The adult stingless bee workers exhibited high oral insecticide susceptibility, with LD50s of 23.54 and 12.07 ng a.i./bee for imidacloprid and spinosad, respectively. Imidacloprid also impaired worker respiration and overall group activity and flight, while spinosad significantly impaired only worker flight despite exhibiting higher oral toxicity to adult workers than imidacloprid. These findings indicate the hazardous nature not only of imidacloprid but also the bioinsecticide spinosad to adult workers of the native pollinator M. quadrifasciata. Therefore, bioinsecticides should not be exempted from risk assessment analysis due to their lethal and sublethal components.


Environmental Toxicology and Chemistry | 2015

Biopesticide‐induced behavioral and morphological alterations in the stingless bee Melipona quadrifasciata

Wagner Faria Barbosa; Hudson V. V. Tomé; Rodrigo Cupertino Bernardes; Maria Augusta L Siqueira; Guy Smagghe; Raul Narciso C. Guedes

Because of their natural origin, biopesticides are assumed to be less harmful to beneficial insects, including bees, and therefore their use has been widely encouraged for crop protection. There is little evidence, however, to support this ingrained notion of biopesticide safety to pollinators. Because larval exposure is still largely unexplored in ecotoxicology and risk assessment on bees, an investigation was performed on the lethal and sublethal effects of a diet treated with 2 bioinsecticides, azadirachtin and spinosad, on the stingless bee, Melipona quadrifasciata, which is one of the most important pollinators in the Neotropics. Survival of stingless bee larvae was significantly compromised at doses above 210 ng a.i./bee for azadirachtin and 114 ng a.i./bee for spinosad. No sublethal effect was observed on larvae developmental time, but doses of both compounds negatively affected pupal body mass. Azadirachtin produced deformed pupae and adults as a result of its insect growth regulator properties, but spinosad was more harmful and produced greater numbers of deformed individuals. Only spinosad compromised walking activity of the adult workers at doses as low as 2.29 ng a.i./bee, which is 1/5000 of the maximum field recommended rate. In conclusion, the results demonstrated that bioinsecticides can pose significant risks to native pollinators with lethal and sublethal effects; future investigations are needed on the likelihood of such effects under field conditions.


Scientific Reports | 2017

Detection of a new pyrethroid resistance mutation (V410L) in the sodium channel of Aedes aegypti : a potential challenge for mosquito control

Khalid Haddi; Hudson V. V. Tomé; Yuzhe Du; Wilson Rodrigues Valbon; Yoshiko Nomura; Gustavo Ferreira Martins; Ke Dong; Eugênio E. Oliveira

The yellow fever mosquito, Aedes aegypti, particularly in Neotropical regions, is the principal vector of dengue, yellow fever, Zika and Chikungunya viruses. Pyrethroids remain one of the most used insecticides to control Aedes mosquitoes, despite the development of pyrethroid resistance in many mosquito populations worldwide. Here, we report a Brazilian strain of A. aegypti with high levels (approximately 100–60,000 fold) of resistance to both type I and type II pyrethroids. We detected two mutations (V410L and F1534C) in the sodium channel from this resistant strain. This study is the first report of the V410L mutation in mosquitoes. Alone or in combination with the F1534C mutation, the V410L mutation drastically reduced the sensitivity of mosquito sodium channels expressed in Xenopus oocytes to both type I and type II pyrethroids. The V410L mutation presents a serious challenge for the control of A. aegypti and will compromise the use of pyrethroids for the control of A. aegypti in Brazil; therefore, early monitoring of the frequency of the V410L mutation will be a key resistance management strategy to preserve the effectiveness of pyrethroid insecticides.


Journal of Apicultural Research | 2016

Protocol for the in vitro rearing of honey bee (Apis mellifera L.) workers

Daniel R. Schmehl; Hudson V. V. Tomé; Ashley N. Mortensen; Gustavo Ferreira Martins; James D. Ellis

The in vitro rearing of worker honey bees (Apis mellifera L.) has become an increasingly important method in honey bee research in general, and in pesticide risk assessment specifically. Authorities from the European Organization for Economic Co-operation and Development and the United States Environmental Protection Agency are requesting data on pesticide impacts on immature bee survivorship prior to registering new crop protection products. Those using the current in vitro rearing protocols have had variable success with immature bee survival and protocol repeatability. Here, we present an improved method for the in vitro rearing of worker honey bees from larvae to adult emergence. We have achieved consistently high survival (>95%) in our control and solvent-control rearing trials. Changes in the proportion of diet components, royal jelly source, maintenance of the developing bee, and rearing environment are the main contributors for our high rearing success and are discussed herein. Our in vitro rearing protocol can be implemented as the standard protocol to determine the impact of pesticides on immature bees because of the protocol’s high control survivability, ease in end point determination, and high overall repeatability.


Acta Tropica | 2016

Deltamethrin-mediated survival, behavior, and oenocyte morphology of insecticide-susceptible and resistant yellow fever mosquitos (Aedes aegypti).

Nadja Biondine Marriel; Hudson V. V. Tomé; Raul Carvalho Narciso Guedes; Gustavo Ferreira Martins

Insecticide use is the prevailing control tactic for the mosquito Aedes aegypti, a vector of several human viruses, which leads to ever-increasing problems of insecticide resistance in populations of this insect pest species. The underlying mechanisms of insecticide resistance may be linked to the metabolism of insecticides by various cells, including oenocytes. Oenocytes are ectodermal cells responsible for lipid metabolism and detoxification. The goal of this study was to evaluate the sublethal effects of deltamethrin on survival, behavior, and oenocyte structure in the immature mosquitoes of insecticide-susceptible and resistant strains of A. aegypti. Fourth instar larvae (L4) of both strains were exposed to different concentrations of deltamethrin (i.e., 0.001, 0.003, 0.005, and 0.007 ppm). After exposure, L4 were subjected to behavioral bioassays. Insecticide effects on cell integrity after deltamethrin exposure (at 0.003 or 0.005 ppm) were assessed by processing pupal oenocytes for transmission electron microscopy or TUNEL reaction. The insecticide resistant L4 survived all the tested concentrations, whereas the 0.007-ppm deltamethrin concentration had lethal effects on susceptible L4. Susceptible L4 were lethargic and exhibited less swimming activity than unexposed larvae, whereas the resistant L4 were hyperexcited following exposure to 0.005 ppm deltamethrin. No sublethal effects and no significant cell death were observed in the oenocytes of either susceptible or resistant insects exposed to deltamethrin. The present study illustrated the different responses of susceptible and resistant strains of A. aegypti following exposure to sublethal concentration of deltamethrin, and demonstrated how the behavior of the immature stage of the two strains varied, as well as oenocyte structure following insecticide exposure.


Apidologie | 2017

Azadirachtin-induced antifeeding in Neotropical stingless bees

Rodrigo Cupertino Bernardes; Hudson V. V. Tomé; Wagner Faria Barbosa; Raul Narciso C. Guedes; Maria Augusta Pereira Lima

The ongoing debate regarding the role of pesticides in the global decline of bee populations is increasing the demand for use of biopesticides, compounds generally believed to be less harmful to pollinators. However, there is lack of evidence justifying such perceptions, particularly regarding native pollinator species like Neotropical stingless bees. Here, we investigated whether azadirachtin, a neem-based biopesticide, causes significant lethal and sublethal effects on adult workers of the Neotropical stingless bee species Melipona quadrifasciata and Partamona helleri. Susceptibility to azadirachtin varied with several factors, including the route of exposure, the concentration of the biopesticide, and the bee species. We found that although azadirachtin did not affect worker bee mortality, flight, or respiration rate, it did, however, induce a significant antifeeding effect on the stingless bee species.


Royal Society Open Science | 2017

Agrochemical synergism imposes higher risk to Neotropical bees than to honeybees.

Hudson V. V. Tomé; Gabryele S. Ramos; Micaele F. Araújo; Weyder Cristiano Santana; Gil Rodrigues dos Santos; Raul Narciso C. Guedes; Carlos Dias Maciel; Philip L. Newland; Eugênio E. Oliveira

Bees are key pollinators whose population numbers are declining, in part, owing to the effects of different stressors such as insecticides and fungicides. We have analysed the susceptibility of the Africanized honeybee, Apis mellifera, and the stingless bee, Partamona helleri, to commercial formulations of the insecticides deltamethrin and imidacloprid. The toxicity of fungicides based on thiophanate-methyl and chlorothalonil were investigated individually and in combination, and with the insecticides. Results showed that stingless bees were more susceptible to insecticides than honeybees. The commercial fungicides thiophanate-methyl or chlorothalonil caused low mortality, regardless of concentration; however, their combination was as toxic as imidacloprid to both species, and over 400-fold more toxic than deltamethrin for A. mellifera. There were highly synergistic effects on mortality caused by interactions in the mixture of imidacloprid and the fungicides thiophanate-methyl, chlorothalonil and the combined fungicide formulation in A. mellifera, and also to a lesser extent in P. helleri. By contrast, mixtures of the deltamethrin and the combined fungicide formulation induced high synergy in P. helleri, but had little effect on the mortality of A. mellifera. Differences in physiology and modes of action of agrochemicals are discussed as key factors underlying the differences in susceptibility to agrochemicals.


Environmental Toxicology and Chemistry | 2017

Deltamethrin toxicity and impaired swimming behavior of two backswimmer species

Yeisson Gutiérrez; Hudson V. V. Tomé; Raul Narciso C. Guedes; Eugênio E. Oliveira

Backswimmers (Hemiptera: Heteroptera: Notonectidae) are insect predators in a wide variety of freshwater habitats. These insects are well known through their role as mosquito biocontrol agents, their ability to prey on immature fishes and frogs, and because they are often the first to colonize aquatic habitats. As a consequence, these predators may face intended or unintended insecticide exposures that may lead to death or to impairment of essential behaviors (e.g., swimming and position in the water column). The toxicity of deltamethrin (a type II pyrethroid insecticide stressor) and the swimming activity of the backswimmers Buenoa tarsalis and Martarega bentoi were evaluated. Concentration-mortality and survival bioassays were conducted with the insecticide, which were compared with controls without deltamethrin. Deltamethrin was 26-fold more toxic to B. tarsalis (median lethal concentration [LC50] = 4.0 ng a.i./L) than to M. bentoi (LC50 = 102.5 ng a.i./L). The pattern of occupation of B. tarsalis, but not of M. bentoi, in the water column was also disrupted, and B. tarsalis was forced to stay near the water surface longer with exposure to deltamethrin. Thus, based on the findings, B. tarsalis was less resilient to deltamethrin exposure compared with M. bentoi, and the efficacy of swimming-dependent processes might be negatively affected (e.g., prey catching, partner encounter, and antipredator behaviors) for B. tarsalis under deltamethrin exposure. Environ Toxicol Chem 2017;36:1235-1242.


Pest Management Science | 2018

Spinosad-mediated effects on the walking ability, midgut, and Malpighian tubules of Africanized honey bee workers: Effects of spinosad on Africanized honey bee workers

Marcos Pereira Lopes; Kenner Morais Fernandes; Hudson V. V. Tomé; Wagner Gonzaga Gonçalves; Franciane Rosa Miranda; José Eduardo Serrão; Gustavo Ferreira Martins

BACKGROUND The global decline in Apis mellifera colonies is attributed to multiple factors, including pesticides. The bioinsecticide spinosad was initially recognized as safe for non-target organisms; however, its toxicity has been changing this view. Here, we investigated the survival, behavioral changes, and structural changes in the midgut and Malpighian tubules of A. mellifera treated orally with a spinosad formulation. RESULTS The field-recommended concentration of spinosad killed 100% of the bees. The 5% and 50% lethal concentrations (LC5 and LC50 , respectively) of spinosad altered the behavioral activity, reducing the walking distance and velocity, and increased the resting time in comparison to the control. The LC50 caused disorganization of the epithelia of tested organs and induced oxidative stress and cell death. CONCLUSIONS The present work provides new insights into the debate about the role of bioinsecticides in the mortality of Africanized honey bees. Even at very low concentrations, the spinosad formulation was toxic to the vital organs midgut and Malpighian tubules and adversely affected walking behavior. This detailed evaluation of the impact of the bioinsecticide on A. mellifera will contribute to the clarification of disturbances probably caused by spinosad formulations, which can be used to develop more sustainable protocols in agriculture.

Collaboration


Dive into the Hudson V. V. Tomé's collaboration.

Top Co-Authors

Avatar

Gustavo Ferreira Martins

Universidade Federal de Viçosa

View shared research outputs
Top Co-Authors

Avatar

Raul Narciso C. Guedes

Universidade Federal de Viçosa

View shared research outputs
Top Co-Authors

Avatar

Eugênio E. Oliveira

Universidade Federal de Viçosa

View shared research outputs
Top Co-Authors

Avatar

Wagner Faria Barbosa

Universidade Federal de Viçosa

View shared research outputs
Top Co-Authors

Avatar

Gabryele S. Ramos

Universidade Federal de Viçosa

View shared research outputs
Top Co-Authors

Avatar

Gil Rodrigues dos Santos

Federal University of Tocantins

View shared research outputs
Top Co-Authors

Avatar

R.N.C. Guedes

Universidade Federal de Viçosa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Conrado A. Rosi-Denadai

Universidade Federal de Viçosa

View shared research outputs
Researchain Logo
Decentralizing Knowledge