Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hugh Chapman is active.

Publication


Featured researches published by Hugh Chapman.


Disease Models & Mechanisms | 2012

Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture

Anna Lahti; Ville J. Kujala; Hugh Chapman; Ari-Pekka Koivisto; Mari Pekkanen-Mattila; Erja Kerkelä; Jari Hyttinen; Kimmo Kontula; Heikki Swan; Bruce R. Conklin; Shinya Yamanaka; Olli Silvennoinen; Katriina Aalto-Setälä

SUMMARY Long QT syndrome (LQTS) is caused by functional alterations in cardiac ion channels and is associated with prolonged cardiac repolarization time and increased risk of ventricular arrhythmias. Inherited type 2 LQTS (LQT2) and drug-induced LQTS both result from altered function of the hERG channel. We investigated whether the electrophysiological characteristics of LQT2 can be recapitulated in vitro using induced pluripotent stem cell (iPSC) technology. Spontaneously beating cardiomyocytes were differentiated from two iPSC lines derived from an individual with LQT2 carrying the R176W mutation in the KCNH2 (HERG) gene. The individual had been asymptomatic except for occasional palpitations, but his sister and father had died suddenly at an early age. Electrophysiological properties of LQT2-specific cardiomyocytes were studied using microelectrode array and patch-clamp, and were compared with those of cardiomyocytes derived from control cells. The action potential duration of LQT2-specific cardiomyocytes was significantly longer than that of control cardiomyocytes, and the rapid delayed potassium channel (IKr) density of the LQT2 cardiomyocytes was significantly reduced. Additionally, LQT2-derived cardiac cells were more sensitive than controls to potentially arrhythmogenic drugs, including sotalol, and demonstrated arrhythmogenic electrical activity. Consistent with clinical observations, the LQT2 cardiomyocytes demonstrated a more pronounced inverse correlation between the beating rate and repolarization time compared with control cells. Prolonged action potential is present in LQT2-specific cardiomyocytes derived from a mutation carrier and arrhythmias can be triggered by a commonly used drug. Thus, the iPSC-derived, disease-specific cardiomyocytes could serve as an important platform to study pathophysiological mechanisms and drug sensitivity in LQT2.


Journal of the American College of Cardiology | 2001

A founder mutation of the potassium channel KCNQ1 in long QT syndrome ☆: Implications for estimation of disease prevalence and molecular diagnostics

Kirsi Piippo; Heikki Swan; Michael Pasternack; Hugh Chapman; Kristian Paavonen; Matti Viitasalo; Lauri Toivonen; Kimmo Kontula

OBJECTIVES We took advantage of the genetic isolate of Finns to characterize a common long QT syndrome (LQTS) mutation, and to estimate the prevalence of LQTS. BACKGROUND The LQTS is caused by mutations in different ion channel genes, which vary in their molecular nature from family to family. METHODS The potassium channel gene KCNQ1 was sequenced in two unrelated Finnish patients with Jervell and Lange-Nielsen syndrome (JLNS), followed by genotyping of 114 LQTS probands and their available family members. The functional properties of the mutation were studied using a whole-cell patch-damp technique. RESULTS We identified a novel missense mutation (G589D or KCNQ1-Fin) in the C-terminus of the KCNQ1 subunit. The voltage threshold of activation for the KCNQ1-Fin channel was markedly increased compared to the wild-type channel. This mutation was present in homozygous form in two siblings with JLNS, and in heterozygous form in 34 of 114 probands with Romano-Ward syndrome (RWS) and 282 family members. The mean (+/- SD) rate-corrected QT intervals of the heterozygous subjects (n = 316) and noncarriers (n = 423) were 460 +/- 40 ms and 410 +/- 20 ms (p < 0.001), respectively. CONCLUSIONS A single missense mutation of the KCNQ1 gene accounts for 30% of Finnish cases with LQTS, and it may be associated with both the RWS and JLNS phenotypes of the syndrome. The relative enrichment of this mutation most likely represents a founder gene effect. These circumstances provide an excellent opportunity to examine how genetic and nongenetic factors modify the LQTS phenotype.


Cardiovascular Research | 2003

Functional characterization of the common amino acid 897 polymorphism of the cardiac potassium channel KCNH2 (HERG)

Kristian Paavonen; Hugh Chapman; Päivi Laitinen; Heidi Fodstad; Kirsi Piippo; Heikki Swan; Lauri Toivonen; Matti Viitasalo; Kimmo Kontula; Michael Pasternack

OBJECTIVE To determine whether the amino acid 897 threonine (T) to lysine (K) polymorphism of the KCNH2 (HERG) potassium channel influences channel performance or patient phenotype. METHODS The phenotypic effects of this polymorphism were investigated in vitro by electrophysiological experiments in HEK-293 cells and in vivo by exercise electrocardiography in a group of LQTS patients carrying the same genetically proven KCNQ1 mutation. RESULTS When expressed in HEK-293 cells, the 897T isoform of the KCNH2 channel exhibited changes in inactivation and deactivation properties, and a smaller current density than the more common 897K isoform. Western blot experiments indicated that the decreased current density associated with 897T was caused by reduced channel expression. During a maximal exercise test in 39 LQT1 patients carrying an identical KCNQ1 mutation (G589D) and showing a prolonged QT interval (>440 ms), QT intervals were longer in patients carrying the 897T allele than in those homozygous for the 897K allele. CONCLUSIONS The K897T variation has an effect on channel function and clinical phenotype. Our data warrant further investigations into the significance of this polymorphism in drug-induced and inherited LQTS.


Pain | 2011

Spinal transient receptor potential ankyrin 1 channel contributes to central pain hypersensitivity in various pathophysiological conditions in the rat.

Hong Wei; Ari Koivisto; Marja Saarnilehto; Hugh Chapman; Katja Kuokkanen; Bin Hao; Jin-Lu Huang; Yong-Xiang Wang; Antti Pertovaara

&NA; The transient receptor potential ankyrin 1 (TRPA1) ion channel is expressed on nociceptive primary afferent neurons. On the proximal nerve ending within the spinal dorsal horn, TRPA1 regulates transmission to spinal interneurons, and thereby pain hypersensitivity. Here we assessed whether the contribution of the spinal TRPA1 channel to pain hypersensitivity varies with the experimental pain model, properties of test stimulation or the behavioral pain response. The antihypersensitivity effect of intrathecally (i.t.) administered Chembridge‐5861528 (CHEM; a selective TRPA1 channel antagonist; 5–10 μg) was determined in various experimental models of pain hypersensitivity in the rat. In spinal nerve ligation and rapid eye movement (REM) sleep deprivation models, i.t. CHEM attenuated mechanical hypersensitivity. Capsaicin‐induced secondary (central) but not primary (peripheral) mechanical hypersensitivity was also reduced by i.t. administration of CHEM or A‐967079, another TRPA1 channel antagonist. Formalin‐induced secondary mechanical hypersensitivity, but not spontaneous pain, was suppressed by i.t. CHEM. Moreover, mechanical hypersensitivity induced by cholekystokinin in the rostroventromedial medulla was attenuated by i.t. pretreatment with CHEM. Independent of the model, the antihypersensitivity effect induced by i.t. CHEM was predominant on responses evoked by low‐intensity stimuli (⩽6 g). CHEM (10 μg i.t.) failed to attenuate pain behavior in healthy controls or mechanical hypersensitivities induced by i.t. administrations of a GABAA receptor antagonist, or NMDA or 5‐HT3 receptor agonists. Conversely, i.t. administration of a TRPA1 channel agonist, cinnamon aldehyde, induced mechanical hypersensitivity. The results indicate that the spinal TRPA1 channel exerts an important role in secondary (central) pain hypersensitivity to low‐intensity mechanical stimulation in various pain hypersensitivity conditions. The spinal TRPA1 channel provides a promising target for the selective attenuation of a central mechanism contributing to pathophysiological pain.


Pharmacological Research | 2012

Inhibiting TRPA1 ion channel reduces loss of cutaneous nerve fiber function in diabetic animals: Sustained activation of the TRPA1 channel contributes to the pathogenesis of peripheral diabetic neuropathy

Ari Koivisto; Mika Hukkanen; Marja Saarnilehto; Hugh Chapman; Katja Kuokkanen; Hong Wei; Hanna Viisanen; Karl E.O. Åkerman; Ken A. Lindstedt; Antti Pertovaara

Peripheral diabetic neuropathy (PDN) is a devastating complication of diabetes mellitus (DM). Here we test the hypothesis that the transient receptor potential ankyrin 1 (TRPA1) ion channel on primary afferent nerve fibers is involved in the pathogenesis of PDN, due to sustained activation by reactive compounds generated in DM. DM was induced by streptozotocin in rats that were treated daily for 28 days with a TRPA1 channel antagonist (Chembridge-5861528) or vehicle. Laser Doppler flow method was used for assessing axon reflex induced by intraplantar injection of a TRPA1 channel agonist (cinnamaldehyde) and immunohistochemistry to assess substance P-like innervation of the skin. In vitro calcium imaging and patch clamp were used to assess whether endogenous TRPA1 agonists (4-hydroxynonenal and methylglyoxal) generated in DM induce sustained activation of the TRPA1 channel. Axon reflex induced by a TRPA1 channel agonist in the plantar skin was suppressed and the number of substance P-like immunoreactive nerve fibers was decreased 4 weeks after induction of DM. Prolonged treatment with Chembridge-5861528 reduced the DM-induced attenuation of the cutaneous axon reflex and loss of substance P-like immunoreactive nerve fibers. Moreover, in vitro calcium imaging and patch clamp results indicated that reactive compounds generated in DM (4-hydroxynonenal and methylglyoxal) produced sustained activations of the TRPA1 channel, a prerequisite for adverse long-term effects. The results indicate that the TRPA1 channel exerts an important role in the pathogenesis of PDN. Blocking the TRPA1 channel provides a selective disease-modifying treatment of PDN.


Journal of Cell Science | 2005

Downregulation of the HERG (KCNH2) K(+) channel by ceramide: evidence for ubiquitin-mediated lysosomal degradation.

Hugh Chapman; Cia Ramström; Laura Korhonen; Mika Laine; Kenneth Taylor Wann; Dan Lindholm; Michael Pasternack; Kid Törnquist

The HERG (KCNH2) potassium channel underlies the rapid component of the delayed rectifier current (Ikr), a current contributing to the repolarisation of the cardiac action potential. Mutations in HERG can cause the hereditary forms of the short-QT and long-QT syndromes, predisposing to ventricular arrhythmias and sudden cardiac death. HERG is expressed mainly in the cell membrane of cardiac myocytes, but has also been identified in cell membranes of a range of other cells, including smooth muscle and neurones. The mechanisms regulating the surface expression have however not yet been elucidated. Here we show, using stable HERG-expressing HEK 293 cells, that ceramide evokes a time-dependent decrease in HERG current which was not attributable to a change in gating properties of the channel. Surface expression of the HERG channel protein was reduced by ceramide as shown by biotinylation of surface proteins, western blotting and immunocytochemistry. The rapid decline in HERG protein after ceramide stimulation was due to protein ubiquitylation and its association with lysosomes. The results demonstrate that the surface expression of HERG is strictly regulated, and that ceramide modifies HERG currents and targets the protein for lysosomal degradation.


Neuropharmacology | 2010

Roles of cutaneous versus spinal TRPA1 channels in mechanical hypersensitivity in the diabetic or mustard oil-treated non-diabetic rat

Hong Wei; Hugh Chapman; Marja Saarnilehto; Katja Kuokkanen; Ari Koivisto; Antti Pertovaara

Previous results indicate that intaperitoneal administration of a TRPA1 channel antagonist attenuates diabetic hypersensitivity. We studied whether the antihypersensitivity effect induced by a TRPA1 channel antagonist in diabetic animals is explained by action on the TRPA1 channel in the skin, the spinal cord, or both. For comparison, we determined the contribution of cutaneous and spinal TRPA1 channels to development of hypersensitivity induced by topical administration of mustard oil in healthy controls. Diabetes mellitus was induced by streptozotocin in the rat. Hypersensitivity was assessed by the monofilament- and paw pressure-induced limb withdrawal response. Intrathecal (i.t.) administration of Chembridge-5861528 (CHEM, a TRPA1 channel antagonist) at doses 2.5-5.0 microg/rat markedly attenuated diabetic hypersensitivity, whereas 20 microg of CHEM was needed to produce a weak attenuation of diabetic hypersensitivity with intraplantar (i.pl.) administrations. In controls, i.pl. administration of CHEM (20 microg) produced a weak antihypersensitivity effect at the mustard oil-treated site. I.t. administration of CHEM (10 microg) in controls produced a strong antihypersensitivity effect adjacent to the mustard oil-treated area (site of secondary hyperalgesia), while it failed to influence hypersensitivity at the mustard oil-treated area (site of primary hyperalgesia). A reversible antagonism of the rat TRPA1 channel by CHEM was verified using in vitro patch clamp recordings. The results suggest that while cutaneous TRPA1 channels contribute to mechanical hypersensitivity induced by diabetes or topical mustard oil, spinal TRPA1 channels, probably on central terminals of primary afferent nerve fibers, play an important role in maintenance of mechanical hypersensitivity in these conditions.


Experimental Biology and Medicine | 2010

Human embryonic stem cell-derived cardiomyocytes: demonstration of a portion of cardiac cells with fairly mature electrical phenotype

Mari Pekkanen-Mattila; Hugh Chapman; Erja Kerkelä; Riitta Suuronen; Heli Skottman; Ari-Pekka Koivisto; Katriina Aalto-Setälä

Cardiomyocytes (CMs) derived from human embryonic stem cells (hESC) provide a promising tool for the pharmaceutical industry. In this study the electrical properties and maturation of hESC-CM derived using two differentiation methods were compared and the suitability of hESC-CMs as a cell model for the assessment of drug-induced repolarization delay was evaluated. CMs were differentiated either in END-2 co-culture or by spontaneous differentiation. Action potentials (APs) were recorded from cells in spontaneously beating areas using the whole-cell patch-clamp technique. The hESC-CMs exhibited predominantly a ventricular-like phenotype with heterogeneous properties. Heterogeneity was indicative of the spectrum of hESC-CM maturation from embryonic-like with AP upstroke velocities <30 V/s and maximum diastolic potential (MDP) of close to −60 mV to more mature with values >150 V/s and −80 mV, respectively. The mean MDP was −70 mV and a significant difference was observed between the two differentiation methods (−66 versus −75 mV, P < 0.001). The age of the CMs did not correlate with phenotype maturation. The addition of the hERG blocker E-4031 and the sodium channel modulator veratridine significantly prolonged the AP duration. Furthermore, proarrhythmic indices were induced. In conclusion, the main observation was the heterogeneity in electrical properties of the hESC-CMs and this was observed with both differentiation methods. One-third of the hESC-CMs exhibited fairly mature electrophysiological properties, suggesting that mature CMs could be obtained from hESCs. However, improved differentiation methods are needed to produce homogeneous mature human CMs for pharmaceutical and toxicological applications.


Journal of the American College of Cardiology | 2000

Homozygosity for a HERG potassium channel mutation causes a severe form of long QT syndrome: identification of an apparent founder mutation in the Finns☆

Kirsi Piippo; Päivi Laitinen; Heikki Swan; Lauri Toivonen; Matti Viitasalo; Michael Pasternack; Kristian Paavonen; Hugh Chapman; Kenneth Taylor Wann; Eeva Hirvelä; Antti Sajantila; Kimmo Kontula

OBJECTIVES We studied the clinical characteristics and molecular background underlying a severe phenotype of long QT syndrome (LQTS). BACKGROUND Mutations of cardiac ion channel genes cause LQTS, manifesting as increased risk of ventricular tachycardia and sudden death. METHODS We studied two siblings showing prolonged QT intervals corrected for heart rate (QTc), their asymptomatic parents with only marginally prolonged QTc intervals and their family members. The potassium channel gene HERG was screened for mutations by deoxyribonucleic acid sequencing, and the electrophysiologic consequences of the mutation were studied in vitro using the whole-cell patch-clamp technique. RESULTS A novel missense mutation (L552S) in the HERG channel, present in the homozygous state in the affected siblings and in the heterozygous state in their parents, as well as in 38 additional subjects from six LQTS families, was identified. One of the homozygous siblings had 2:1 atrioventricular block immediately after birth, and died at the age of four years after experiencing unexplained hypoglycemia. The other sibling had an episode of torsade de pointes at the age of two years. The mean QTc interval differed significantly (p < 0.001) between heterozygous symptomatic mutation carriers (500 +/- 59 ms), asymptomatic mutation carriers (452 +/- 34 ms) and noncarriers (412 +/- 23 ms). When expressed in vitro, the HERG-L552S formed functional channels with increased activation and deactivation rates. CONCLUSIONS Our data demonstrate that homozygosity for a HERG mutation can cause a severe cardiac repolarization disorder without other phenotypic abnormalities. Absence of functional HERG channels appears to be one cause for intrauterine and neonatal bradycardia and 2:1 atrioventricular block.


Basic & Clinical Pharmacology & Toxicology | 2014

TRPA1: A Transducer and Amplifier of Pain and Inflammation

Ari Koivisto; Hugh Chapman; Niina Jalava; Timo Korjamo; Marja Saarnilehto; Ken A. Lindstedt; Antti Pertovaara

The transient receptor potential ankyrin 1 (TRPA1) ion channel on peripheral terminals of nociceptive primary afferent nerve fibres contributes to the transduction of noxious stimuli to electrical signals, while on central endings in the spinal dorsal horn, it amplifies transmission to spinal interneurons and projection neurons. The centrally propagating nociceptive signal that is induced and amplified by TRPA1 not only elicits pain sensation but also contributes to peripheral neurogenic inflammation through a peripheral axon reflex or a centrally mediated back propagating dorsal root reflex that releases vasoactive agents from sensory neurons in the periphery. Endogenous TRPA1 agonists that are generated under various pathophysiological conditions both in the periphery and in the spinal cord have TRPA1-mediated pro-nociceptive and pro-inflammatory effects. Among endogenous TRPA1 agonists that have been shown to play a role in the pathogenesis of pain and inflammatory conditions are, for example, methylglyoxal, 4-hydroxynonenal, 12-lipoxygenase-derived hepoxilin A3, 5,6-epoxyeicosatrienoic acid and reactive oxygen species, while mustard oil and cinnamaldehyde are most commonly used exogenous TRPA1 agonists in experimental studies. Among selective TRPA1 antagonists are HC-030031, A-967079, AP-14 and Chembridge-5861528. Recent evidence indicates that TRPA1 plays a role also in transition of acute to chronic pain. Due to its location on a subpopulation of pain-mediating primary afferent nerve fibres, blocking the TRPA1 channel is expected to have antinociceptive, antiallodynic and anti-inflammatory effects.

Collaboration


Dive into the Hugh Chapman's collaboration.

Top Co-Authors

Avatar

Michael Pasternack

Minerva Foundation Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge