Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hugh Hunt is active.

Publication


Featured researches published by Hugh Hunt.


Journal of Physics: Conference Series | 2011

A dynamic model to predict the occurrence of skidding in wind-turbine bearings

Sharad Jain; Hugh Hunt

Despite use of the best in current design practices, high-speed shaft (HSS) bearings, in a wind-turbine gearbox, continue to exhibit a high rate of premature failure. As HSS bearings operate under low loads and high speeds, these bearings are prone to skidding. However, most of the existing methods for analyzing skidding are quasi-static in nature and cannot be used to study dynamic operating conditions. This paper proposes a dynamic model, which includes gyroscopic and centrifugal effects, to study the skidding characteristics of angular-contact ball-bearings. Traction forces between rolling-elements and raceways are obtained using elastohydrodynamic (EHD) lubrication theory. Underlying gross-sliding mechanisms for pure axial loads, and combined radial and axial loads are also studied. The proposed model will enable engineers to improve bearing reliability at the design stage, by estimating the amount of skidding.


Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit | 2012

Prediction uncertainties and inaccuracies resulting from common assumptions in modelling vibration from underground railways

Simon Jones; K.A. Kuo; M.F.M. Hussein; Hugh Hunt

Underground railways produce significant ground-borne vibration that is reported to disturb people living or working near subways. Designers and engineers use numerical models to predict vibration levels so as to meet the increasingly strict vibration standards. These models commonly include simplifying assumptions to reduce the complexity and cost of the simulation. This paper reviews six commonly disregarded aspects of the underground railway environment and their respective effects on vibration prediction values: a second (twin) tunnel, piled foundations, track with discontinuous slabs, soil inhomogeneity, inclined soil layers, and irregular contact at the tunnel–soil interface. Results suggest that accounting for each of these simplifying assumptions can result in predictions that vary from the simplified cases by at least 5 dB and potentially up to 20 dB. This is a significant level of uncertainty and should be considered when estimating the predictive accuracy of numerical models using simplifying assumptions.


Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit | 2015

The use of sub-modelling technique to calculate vibration in buildings from underground railways

M.F.M. Hussein; Hugh Hunt; K.A. Kuo; Pedro Costa; Joao Manuel de Oliveira Barbosa

In this paper, a method is presented for the calculation of the vibration created in buildings by the operation of underground railways. The method is based on the sub-modelling approach which is used to couple a model of a building on a piled foundation to another model that calculates the vibration generated in the soil in underground railway tunnels. The method couples a building on a piled foundation to the soil at discrete points by satisfying equilibrium and compatibility requirements at those points. The method results in efficient numerical calculations. A two-dimensional frame made of beam elements is used to model the building and its piled foundation. The elements are formulated using a dynamic stiffness matrix which accounts for Euler–Bernoulli bending and axial behaviour. Vibrations created by a train moving in an underground tunnel are calculated using the well-known pipe-in-pipe (PiP) model. The model calculates the power spectral density (PSD) of the displacement in the soil. The excitation mechanism is the roughness of the rail and the PSD is calculated for a train moving on a floating-slab track in an underground railway tunnel for a stationary process. The current version of PiP accounts for a tunnel embedded in a half-space. The building frame is coupled in this paper at 90° to the tunnel’s centreline. The main result of this paper illustrates the significant contribution of the building’s dynamics to the displacement wave field received by the building. The example presented in this paper shows a decrease of more than 20 dB in the displacement PSDs at frequencies larger than 10 Hz when accounting for the change in this wave field.


Journal of Engineering Mechanics-asce | 2011

Effect of Inclined Soil Layers on Surface Vibration from Underground Railways Using the Thin-Layer Method

Simon Jones; Hugh Hunt

Noise and vibration from underground railways is a documented disturbance for individuals living or working near subways. Numerical models are used to investigate and understand vibration propagation from these underground railways, although the models commonly include simplifying assumptions (i.e., assuming the soil is a horizontally layered, homogenous half-space). Such simplifying assumptions add a level of uncertainty to the predictions that is not well understood. The goal of the current paper is to quantify the effect of including layer inclination angles up to 5° in relation to the surface. The thin-layer method (TLM) is introduced as an efficient and accurate means of simulating vibration from underground railways in arbitrarily layered half-spaces. The TLM is an element-based approach that uses the analytical wave equation to describe vibration in the horizontal direction, whereas assuming displacements in the vertical direction can be described by using a linear shape-function. The method is use...


Volume 7: Dynamic Systems and Control; Mechatronics and Intelligent Machines, Parts A and B | 2011

Vibration Response of a Wind-Turbine Planetary Gear Set in the Presence of a Localized Planet Bearing Defect

Sharad Jain; Hugh Hunt

In a wind-turbine gearbox, planet bearings exhibit a high failure rate and are considered as one of the most critical components. Development of efficient vibration based fault detection methods for these bearings requires a thorough understanding of their vibration signature. Much work has been done to study the vibration properties of healthy planetary gear sets and to identify fault frequencies in fixed-axis bearings. However, vibration characteristics of planetary gear sets containing localized planet bearing defects (spalls or pits) have not been studied so far. In this paper, we propose a novel analytical model of a planetary gear set with ring gear flexibility and localized bearing defects as two key features. The model is used to simulate the vibration response of a planetary system in the presence of a defective planet bearing with faults on inner or outer raceway. The characteristic fault signature of a planetary bearing defect is determined and sources of modulation sidebands are identified. The findings from this work will be useful to improve existing sensor placement strategies and to develop more sophisticated fault detection algorithms. Copyright


Journal of Physics: Conference Series | 2009

The effect of inclined soil layers on surface vibration from underground railways using a semi-analytical approach

Simon Jones; Hugh Hunt

Ground vibration due to underground railways is a significant source of disturbance for people living or working near the subways. The numerical models used to predict vibration levels have inherent uncertainty which must be understood to give confidence in the predictions. A semi-analytical approach is developed herein to investigate the effect of soil layering on the surface vibration of a halfspace where both soil properties and layer inclination angles are varied. The study suggests that both material properties and inclination angle of the layers have significant effect (± 10dB) on the surface vibration response.


Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit | 2018

The dynamic interaction effects of railway tunnels: Crossrail and the Grand Central Recording Studios

Daniel Brookes; Wi Hamad; Jp Talbot; Hugh Hunt; M.F.M. Hussein

In cities around the world, underground railways offer an environmentally friendly solution to society’s increasing demand for mass transport. However, they are often constructed close to sensitive buildings, where the resulting ground-borne noise and vibration can cause disturbance to both the occupants and the equipment. Such a scenario occurred in central London, where the new twin tunnels of Crossrail were bored beneath the Grand Central Recording Studios, causing an immediate concern. As a result, vibration in the studios’ building was monitored throughout the Crossrail construction period. Since Crossrail is yet to operate, the resulting data provide a unique opportunity to investigate the effect of new tunnels, acting as passive buried structures, on the existing vibration environment. This paper presents the results of such an investigation, together with complementary results from a theoretical four-tunnel boundary-element model. The data analysis, presented in the first half of the paper, indicates that the construction of the second Crossrail tunnel has led to an overall reduction in the noise and vibration levels beneath the studios, due to the operation of the nearby Central line trains of London Underground. This is predominantly due to a reduction of approximately 6 dB in the 63 Hz band-limited levels but accompanied by a slight increase, of approximately 2 dB, in the 125 Hz band. Further analysis indicates that any seasonal variations in vibration levels over the measurement period are negligible, adding weight to the conclusion that the observed changes are a causal effect of the tunnel. The second half of the paper presents results from the model, which aims to simulate the dynamic interaction between the Central line tunnels and those of Crossrail. With nominal parameter values, the results demonstrate qualitative similarities with the measurement findings, thereby adding to the growing body of evidence that dynamic interaction between neighbouring tunnels can be significant.


Royal Society Open Science | 2015

Isothermal pumping analysis for high-altitude tethered balloons

K.A. Kuo; Hugh Hunt

High-altitude tethered balloons have potential applications in communications, surveillance, meteorological observations and climate engineering. To maintain balloon buoyancy, power fuel cells and perturb atmospheric conditions, fluids could be pumped from ground level to altitude using the tether as a hose. This paper examines the pumping requirements of such a delivery system. Cases considered include delivery of hydrogen, sulfur dioxide (SO2) and powders as fluid-based slurries. Isothermal analysis is used to determine the variation of pressures and velocities along the pipe length. Results show that transport of small quantities of hydrogen to power fuel cells and maintain balloon buoyancy can be achieved at pressures and temperatures that are tolerable in terms of both the pipe strength and the current state of pumping technologies. To avoid solidification, transport of SO2 would require elevated temperatures that cannot be tolerated by the strength fibres in the pipe. While the use of particle-based slurries rather than SO2 for climate engineering can reduce the pipe size significantly, the pumping pressures are close to the maximum bursting pressure of the pipe.


5th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering Methods in Structural Dynamics and Earthquake Engineering | 2015

The dynamic interaction of twin tunnels embedded in a homogeneous half-space

Wi Hamad; Hugh Hunt; Jp Talbot; M.F.M. Hussein; D.J. Thompson

Vibration generated by underground railways can be a major source of disturbance to occupants of nearby buildings. The numerical prediction of ground-borne vibration is a complicated problem that has received extensive research attention in the past decades. However, simplifying assumptions are always required in state-of-the-art numerical models in order to reduce computational effort and resources. A common simplifying assumption is to neglect the presence of a neighbouring tunnel, despite the fact that many underground railway lines around the world consist of two tunnels. This paper investigates the dynamic interaction of two parallel tunnels embedded in a homogeneous half-space. Two different methods are used to tackle the problem. The first is a fully coupled approach, where two cavities are generated in the halfspace to which the tunnels are coupled. The second adopts a superposition approach, where two sub-models each consisting of a single tunnel are superposed to calculate the vibration response of the twin tunnels. In both modelling approaches, the tunnel wall is modelled using the thick-shell theory, while the boundary element method is used to simulate the half-space of the ground. The vibration response of the twin-tunnel system on the ground surface due to a harmonic point load at one tunnel invert is studied and compared to that of a single tunnel. The efficacy of the superposition method in modelling the dynamic interaction of the twin tunnels is assessed against the fully coupled approach at different points on the surface. The results reveal the significance of the interaction between the twin tunnels and also demonstrate the accuracy of the superposition method. The feasibility of the superposition method in modelling the dynamic interaction between tunnels and piled-foundations is also highlighted.


5th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering Methods in Structural Dynamics and Earthquake Engineering | 2015

Predictions of the dynamic response of piled foundations in a multi-layered half-space due to inertial and railway induced loadings

Evangelos Ntotsios; Wi Hamad; D.J. Thompson; M.F.M. Hussein; Hugh Hunt; Jp Talbot

In this paper, the dynamic pile-soil-pile interaction (PSPI) in a multi-layered half-space is in-vestigated for the prediction of the response of piled foundations due to railway vibrations. Two methods of modelling piled foundations in a multi-layered half-space are presented. The first is an efficient semi-analytical model that calculates the Green’s functions of the multi-layered half-space soil using the thin layer and the dynamic stiffness matrix methods. The second is a fully-coupled model that utilises the boundary element (BE) method to simulate the soil, where the Green’s functions are calculated using the ElastoDynamics Toolbox (EDT). The paper aims to investigate the accuracy and the efficiency of the semi-analytical model by comparing the predictions of the two methods. A set of comparisons is performed, including the driving point response of a single pile and the interaction between two piles. The comparisons reveal that, at most frequencies, the semi-analytical model can predict the driving point response and the dynamic interaction with acceptable accuracy and computational efficiency. The model is then used for predicting the response of a pile-group due to the vibration field generated by a railway in varying distance from the piles. The vibration field generated by the railway is mod-elled as the superposition of the response due to harmonic loadings generated at the wheel-rail interface and the vibration response is examined at different points on the free surface away from the piles. The comparisons highlight the efficiency and accuracy of the semi-analytical model and illustrate its practical application

Collaboration


Dive into the Hugh Hunt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Geert Degrande

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jp Talbot

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Simon Jones

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

K.A. Kuo

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Wi Hamad

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

D.J. Thompson

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Pieter Coulier

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sharad Jain

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge