Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hugh W. Hillhouse is active.

Publication


Featured researches published by Hugh W. Hillhouse.


Journal of the American Chemical Society | 2010

Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTS Nanocrystals

Qijie Guo; Grayson M. Ford; Wei-Chang Yang; Bryce C. Walker; Eric A. Stach; Hugh W. Hillhouse; Rakesh Agrawal

Earth abundant copper-zinc-tin-chalcogenide (CZTSSe) is an important class of material for the development of low cost and sustainable thin film solar cells. The fabrication of CZTSSe solar cells by selenization of CZTS nanocrystals is presented. By tuning the composition of the CZTS nanocrystals and developing a robust film coating method, a total area efficiency as high as 7.2% under AM 1.5 illumination and light soaking has been achieved.


Journal of the American Chemical Society | 2009

Synthesis of Cu2ZnSnS4 Nanocrystal Ink and Its Use for Solar Cells

Qijie Guo; Hugh W. Hillhouse; Rakesh Agrawal

Cu(2)ZnSnS(4) (CZTS) and Cu(2)ZnSnSe(4) (CZTSe) based solar cells are promising candidates for low cost solar cells due to the natural abundance and low toxicity of the constituent elements. Here, we present the first reported synthesis of colloidal CZTS nanocrystals using a simple solution-phase method. Solar cells fabricated using selenized CZTS nanocrystal inks had a power conversion efficiency of 0.74% under AM1.5G illumination.


Nano Letters | 2008

Development of CuInSe2 Nanocrystal and Nanoring Inks for Low-Cost Solar Cells

Qijie Guo; Suk Jun Kim; Mahaprasad Kar; William N. Shafarman; Robert W. Birkmire; Eric A. Stach; Rakesh Agrawal; Hugh W. Hillhouse

The creation of a suitable inorganic colloidal nanocrystal ink for use in a scalable coating process is a key step in the development of low-cost solar cells. Here, we present a facile solution synthesis of chalcopyrite CuInSe 2 nanocrystals and demonstrate that inks based on these nanocrystals can be used to create simple solar cells, with our first cells exhibiting an efficiency of 3.2% under AM1.5 illumination. We also report the first solution synthesis of uniform hexagonal shaped single crystals CuInSe 2 nanorings by altering the synthesis parameter.


Nano Letters | 2010

Dependence of Carrier Mobility on Nanocrystal Size and Ligand Length in PbSe Nanocrystal Solids

Yao Liu; Markelle Gibbs; James Puthussery; Rachelle Ihly; Hugh W. Hillhouse; Matt Law

We measure the room-temperature electron and hole field-effect mobilities (micro(FE)) of a series of alkanedithiol-treated PbSe nanocrystal (NC) films as a function of NC size and the length of the alkane chain. We find that carrier mobilities decrease exponentially with increasing ligand length according to the scaling parameter beta = 1.08-1.10 A(-1), as expected for hopping transport in granular conductors with alkane tunnel barriers. An electronic coupling energy as large as 8 meV is calculated from the mobility data. Mobilities increase by 1-2 orders of magnitude with increasing NC diameter (up to 0.07 and 0.03 cm(2) V(-1) s(-1) for electrons and holes, respectively); the electron mobility peaks at a NC size of approximately 6 nm and then decreases for larger NCs, whereas the hole mobility shows a monotonic increase. The size-mobility trends seem to be driven primarily by the smaller number of hops required for transport through arrays of larger NCs but may also reflect a systematic decrease in the depth of trap states with decreasing NC band gap. We find that carrier mobility is independent of the polydispersity of the NC samples, which can be understood if percolation networks of the larger-diameter, smaller-band-gap NCs carry most of the current in these NC solids. Our results establish a baseline for mobility trends in PbSe NC solids, with implications for fabricating high-mobility NC-based optoelectronic devices.


Nature | 2001

A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules

Steven M. Kuznicki; Valerie A. Bell; Sankar Nair; Hugh W. Hillhouse; Richard M. Jacubinas; Carola Braunbarth; Brian H. Toby; Michael Tsapatsis

Zeolites and related crystalline microporous oxides—tetrahedrally coordinated atoms covalently linked into a porous framework—are of interest for applications ranging from catalysis to adsorption and ion-exchange. In some of these materials (such as zeolite rho) adsorbates, ion-exchange, and dehydration and cation relocation can induce strong framework deformations. Similar framework flexibility has to date not been seen in mixed octahedral/tetrahedral microporous framework materials, a newer and rapidly expanding class of molecular sieves. Here we show that the framework of the titanium silicate ETS-4, the first member of this class of materials, can be systematically contracted through dehydration at elevated temperatures to ‘tune’ the effective size of the pores giving access to the interior of the crystal. We show that this so-called ‘molecular gate’ effect can be used to tailor the adsorption properties of the materials to give size-selective adsorbents suitable for commercially important separations of gas mixtures of molecules with similar size in the 4.0 to 3.0 Å range, such as that of N2/CH4, Ar/O2 and N2/O2.


Nano Letters | 2009

Sulfide Nanocrystal Inks for Dense Cu(In1−xGax)(S1−ySey)2 Absorber Films and Their Photovoltaic Performance

Qijie Guo; Grayson M. Ford; Hugh W. Hillhouse; Rakesh Agrawal

Recent developments in the colloidal synthesis of high quality nanocrystals have opened up new routes for the fabrication of low-cost efficient photovoltaic devices. Previously, we demonstrated the utility of CuInSe(2) nanocrystals in the fabrication of CuInSe(2) thin film solar cells. In those devices, sintering the nanocrystal film yields a relatively dense CuInSe(2) film with some void space inclusions. Here, we present a general approach toward eliminating void space in sintered nanocrystal films by utilizing reactions that yield a controlled volume expansion of the film. This is demonstrated by first synthesizing a nanocrystal ink composed of Cu(In(1-x)Ga(x))S(2) (CIGS). After nanocrystal film formation, the nanocrystals are exposed to selenium vapor during which most of the sulfur is replaced by selenium. Full replacement produces a approximately 14.6% volume expansion and reproducibly leads to good dense device-quality CIGSSe absorber films with reduced inclusion of void space. Solar cells made using the CIGSSe absorber films fabricated by this method showed a power conversion efficiency of 4.76% (5.55% based on the active nonshadowed area) under standard AM1.5 illumination.


Biomaterials | 2008

An electrochemical fabrication process for the assembly of anisotropically oriented collagen bundles

Xingguo Cheng; Umut A. Gurkan; Christopher J. Dehen; Michael P. Tate; Hugh W. Hillhouse; Garth J. Simpson; Ozan Akkus

Controlled assembly of collagen molecules in vitro remains a major challenge for fabricating the next generation of engineered tissues. Here we present a novel electrochemical alignment technique to control the assembly of type-I collagen molecules into highly oriented and densely packed elongated bundles at the macroscale. The process involves application of electric currents to collagen solutions which in turn generate a pH gradient. Through an isoelectric focusing process, the molecules migrate and congregate within a plane. It was possible to fabricate collagen bundles with 50-400 microm diameter and several inches length via this process. The current study assessed the orientational order, and the presence of fibrillar assembly in such electrochemically oriented constructs by polarized optical microscopy, small angle X-ray scattering, second harmonic generation, and electron microscopy. The mechanical strength of the aligned crosslinked collagen bundles was 30-fold greater than its randomly oriented-crosslinked counterpart. Aligned crosslinked collagen bundles had about half the strength of the native tendon. Tendon-derived fibroblast cells were able to migrate and populate multiple macroscopic bundles at a rate of 0.5mm/day. The anisotropic order within biocompatible collagenous constructs was conferred upon the nuclear morphology of cells as well. These results indicate that the electrochemically oriented collagen scaffolds carry baseline characteristics to be considered for tendon/ligament repair.


Journal of Applied Physics | 2010

Universality of non-ohmic shunt leakage in thin-film solar cells

Sourabh Dongaonkar; Jonathan D. Servaites; Grayson M. Ford; Stephen Loser; James E. Moore; Ryan M. Gelfand; Hooman Mohseni; Hugh W. Hillhouse; Rakesh Agrawal; Mark A. Ratner; Tobin J. Marks; Mark Lundstrom; Muhammad A. Alam

We compare the dark current-voltage (IV) characteristics of three different thin-film solar cell types: hydrogenated amorphous silicon (a-Si:H) p-i-n cells, organic bulk heterojunction (BHJ) cells, and Cu(In,Ga)Se2 (CIGS) cells. All three device types exhibit a significant shunt leakage current at low forward bias (V<∼0.4) and reverse bias, which cannot be explained by the classical solar cell diode model. This parasitic shunt current exhibits non-Ohmic behavior, as opposed to the traditional constant shunt resistance model for photovoltaics. We show here that this shunt leakage (Ish), across all three solar cell types considered, is characterized by the following common phenomenological features: (a) voltage symmetry about V=0, (b) nonlinear (power law) voltage dependence, and (c) extremely weak temperature dependence. Based on this analysis, we provide a simple method of subtracting this shunt current component from the measured data and discuss its implications on dark IV parameter extraction. We propose a space charge limited (SCL) current model for capturing all these features of the shunt leakage in a consistent framework and discuss possible physical origin of the parasitic paths responsible for this shunt current mechanism.We compare the dark current-voltage (IV) characteristics of three different thin-film solar cell types: hydrogenated amorphous silicon (a-Si:H) p-i-n cells, organic bulk heterojunction (BHJ) cells, and Cu(In,Ga)Se2 (CIGS) cells. All three device types exhibit a significant shunt leakage current at low forward bias (V<∼0.4) and reverse bias, which cannot be explained by the classical solar cell diode model. This parasitic shunt current exhibits non-Ohmic behavior, as opposed to the traditional constant shunt resistance model for photovoltaics. We show here that this shunt leakage (Ish), across all three solar cell types considered, is characterized by the following common phenomenological features: (a) voltage symmetry about V=0, (b) nonlinear (power law) voltage dependence, and (c) extremely weak temperature dependence. Based on this analysis, we provide a simple method of subtracting this shunt current component from the measured data and discuss its implications on dark IV parameter extraction. We propo...


Journal of Materials Chemistry | 2007

Fabrication of continuous mesoporous carbon films with face-centered orthorhombic symmetry through a soft templating pathway

Shunsuke Tanaka; Yugo Katayama; Michael P. Tate; Hugh W. Hillhouse; Yoshikazu Miyake

Preparation of well-ordered continuous mesoporous carbon films without the use of an intermediate inorganic template was achieved by spin coating of a thermosetting phenolic resin, resorcinol/phloroglucinol/formaldehyde, and a thermally-decomposable organic template, Pluronic F127 (PEO106–PPO70–PEO106). The carbon films were deposited onto silicon, platinum/silicon, copper, glass, and quartz substrates. Afterwards, decomposition of the organic template and solidification of the carbon precursors are simultaneously performed through a carbonization process. The resulting films referred to as CKU-F69, are (010)-oriented, and possess a face-centered orthorhombic Fmmm symmetry. Film periodicity is maintained even after a 68% uniaxial contraction perpendicular to the substrate brought on by carbonization at 800 °C. This method could facilitate the mass-production and creation of new carbon and carbon–polymer porous films that find broad potential applications in catalysis, separation, hydrogen storage, bioengineering, nanodevices, and nanotemplates.


Journal of the American Chemical Society | 2011

Formation Pathway of CuInSe2 Nanocrystals for Solar Cells

Mahaprasad Kar; Rakesh Agrawal; Hugh W. Hillhouse

Copper, indium, and gallium chalcogenide nanocrystals (binary, ternary, and quaternary) have been used to fabricate high-efficiency thin-film solar cells. These solution-based methods are being scaled-up and may serve as the basis for the next generation of low-cost solar cells. However, the formation pathway to reach stoichiometric ternary CuInSe(2) or any chalcopyrite phase ternary or quaternary nanocrystal in the system has not been investigated but may be of significant importance to improving nanocrystal growth and discovering new methods of synthesis. Here, we present the results of X-ray diffraction, electron microscopy, compositional analysis, IR absorption, and mass spectrometry that reveal insights into the formation pathway of CuInSe(2) nanocrystals. Starting with CuCl, InCl(3), and elemental Se all dissolved in oleylamine, the overall reaction that yields CuInSe(2) involves the chlorination of the hydrocarbon groups of the solvent. Further, we show that the amine and alkene functional groups in oleylamine are not necessary for the formation of CuInSe(2) nanocrystals by conducting successful syntheses in 1-octadecene and octadecane. Hence, the role of oleylamine is not limited to nanocrystal size and morphology control; it also acts as a reactant in the formation pathway. Typically, the formation of copper selenide (CuSe) and indium selenide (InSe) nanocrystals precedes the formation of CuInSe(2) nanocrystals in oleylamine. But it was also found that Cu(2-x)Se (0 < x < 0.5) and In(2)Se(3) were the primary intermediates involved in the formation of CISe in a purely non-coordinating solvent such as 1-octadecene, which points to the surface-stabilization effect of the coordinating solvent on the less thermodynamically stable indium selenide (InSe) nanocrystals. We also show that the yield of the chalcopyrite phase of CuInSe(2) (as opposed to the sphalerite phase) can be increased by reacting CuSe nanocrystals with InCl(3).

Collaboration


Dive into the Hugh W. Hillhouse's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian L. Braly

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex K.-Y. Jen

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge