Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hugo A. Kerhervé is active.

Publication


Featured researches published by Hugo A. Kerhervé.


Journal of Applied Physiology | 2010

Central and peripheral contributions to neuromuscular fatigue induced by a 24-h treadmill run

Vincent Martin; Hugo A. Kerhervé; Laurent Messonnier; Jean-Claude Banfi; André Geyssant; Régis Bonnefoy; Léonard Féasson; Guillaume Y. Millet

This experiment investigated the fatigue induced by a 24-h running exercise (24TR) and particularly aimed at testing the hypothesis that the central component would be the main mechanism responsible for neuromuscular fatigue. Neuromuscular function evaluation was performed before, every 4 h during, and at the end of the 24TR on 12 experienced ultramarathon runners. It consisted of a determination of the maximal voluntary contractions (MVC) of the knee extensors (KE) and plantar flexors (PF), the maximal voluntary activation (%VA) of the KE and PF, and the maximal compound muscle action potential amplitude (Mmax) on the soleus and vastus lateralis. Tetanic stimulations also were delivered to evaluate the presence of low-frequency fatigue and the KE maximal muscle force production ability. Strength loss occurred throughout the exercise, with large changes observed after 24TR in MVC for both the KE and PF muscles (-40.9+/-17.0 and -30.3+/-12.5%, respectively; P<0.001) together with marked reductions of %VA (-33.0+/-21.8 and -14.8+/-18.9%, respectively; P<0.001). A reduction of Mmax amplitude was observed only on soleus, and no low-frequency fatigue was observed for any muscle group. Finally, KE maximal force production ability was reduced to a moderate extent at the end of the 24TR (-10.2%; P<0.001), but these alterations were highly variable (+/-15.7%). These results suggest that central factors are mainly responsible for the large maximal muscle torque reduction after ultraendurance running, especially on the KE muscles. Neural drive reduction may have contributed to the relative preservation of peripheral function and also affected the evolution of the running speed during the 24TR.


Journal of Applied Physiology | 2009

Comparison of electrical and magnetic stimulations to assess quadriceps muscle function

Samuel Verges; Nicola A. Maffiuletti; Hugo A. Kerhervé; Nicolas Decorte; Bernard Wuyam; Guillaume Y. Millet

This study aimed to 1) compare electrical and magnetic stimulations for quadriceps muscle function assessment, and 2) ascertain whether the ratios of the second twitch elicited by supramaximal electrical and magnetic femoral nerve stimulation at 10 and 100 Hz (T2(10:100)) and the total twitch force elicited by the same types of stimulations (Fpaired(10:100)) are equivalent to the standard low- to high-frequency force ratio associated with submaximal electrical tetanic stimulations (Ftet(10:100)). Quadriceps force and vastus lateralis EMG were recorded at rest (n = 21 subjects), immediately after, and 30 min after a 30-min downhill run (n = 10) when 1) supramaximal electrical nerve stimulation (ENS), 2) magnetic nerve stimulation (MNS) and 3) submaximal electrical muscle stimulation (EMS) were delivered in random order at 1 (single stimulation), 10, and 100 Hz (paired stimulations). Ten- and 100-Hz 500-ms tetani were also evoked with EMS to determine Ftet(10:100). Before exercise, contractile properties with single and paired stimulations were similar for ENS and MNS (all intraclass correlation coefficients k > 0.90), but smaller for EMS (P < 0.001). M-wave characteristics were also similar for ENS and MNS (all k > 0.90). After exercise, changes in all parameters did not differ between methods. With fatigue, the changes in Ftet(10:100) were inconsistently correlated with the changes in T2(10:100) (r(2) = 0.24-0.73, P = 0.002-0.15) but better correlated with the changes in Fpaired(10:100) (immediately after exercise: r(2) = 0.80-0.83, P < 0.001; 30 min after exercise: r(2) = 0.46-0.82, P = 0.001-0.03). We conclude that ENS and MNS provide similar quadriceps muscle function assessment, while Fpaired(10:100) is a better index than T2(10:100) of low- to high-frequency fatigue of the quadriceps in vivo.


Sports | 2016

The Effect of Recovery Duration on Technical Proficiency during Small Sided Games of Football

Scott McLean; Hugo A. Kerhervé; Mitchell Naughton; Geoff P. Lovell; Adam D. Gorman; Colin Solomon

The aim of this study was to determine the effect of increasing the duration of the recovery periods separating serial bouts of small sided games (SSG) of football on technical skills (TS). Twelve semi-professional footballers (mean ± SD; age 21 ± 3 years; VO2peak 64 ± 7 mL∙min∙kg−1; playing experience 15 ± 3 years) completed two SSG sessions, consisting of 3 vs. 3 players and 6 bouts of 2 min, separated by either 30 s recovery (REC-30) or 120 s recovery (REC-120). Sixteen TS, including passing, possession, and defensive related variables, and exercise intensity (heart rate, rating of perceived exertion, time motion descriptors) during the bouts were measured. Repeated measures ANOVA were used to determine differences between-conditions, for TS. The number of successful tackles was significantly higher, and the average time each team maintained possession was significantly lower in REC-120 compared to REC-30. There were no significant differences for all other TS variables, or exercise intensity measures between REC-30 and REC-120. Overall, a four-fold increase in the duration of recovery separating SSG bouts did not alter the technical skill execution of players. The experience and skill level of the players, combined with an apparent regulation of effort through pacing, may have assisted in the maintenance of technical skill execution.


PLOS ONE | 2015

The Dynamics of Speed Selection and Psycho-Physiological Load during a Mountain Ultramarathon

Hugo A. Kerhervé; Guillaume Y. Millet; Colin Solomon

Background Exercise intensity during ultramarathons (UM) is expected to be regulated as a result of the development of psycho-physiological strain and in anticipation of perceived difficulties (duration, topography). The aim of this study was to investigate the dynamics of speed, heart rate and perceived exertion during a long trail UM in a mountainous setting. Methods Fifteen participants were recruited from competitors in a 106 km trail mountain UM with a total elevation gain and loss of 5870 m. Speed and gradient, heart rate (HR) and ratings of perceived exertion (dissociated between the general [RPEGEN] and knee extensor fatigue [RPEKE] and collected using a voice recorder) were measured during the UM. Self-selected speed at three gradients (level, negative, positive), HR, RPEGEN and RPEKE were determined for each 10% section of total event duration (TED). Results The participants completed the event in 18.3 ± 3.0 h, for a total calculated distance of 105.6 ± 1.8 km. Speed at all gradients decreased, and HR at all gradients significantly decreased from 10% to 70%, 80% and 90%, but not 100% of TED. RPEGEN and RPEKE increased throughout the event. Speed increased from 90% to 100% of TED at all gradients. Average speed was significantly correlated with total time stopped (r = -.772; p = .001; 95% confidence interval [CI] = -1.15, -0.39) and the magnitude of speed loss (r = .540; p = .038; 95% CI = -1.04, -0.03), but not with the variability of speed (r = -.475; p = .073; 95% CI = -1.00, 0.05). Conclusions Participants in a mountain UM event combined positive pacing strategies (speed decreased until 70–90% of TED), an increased speed in the last 10% of the event, a decrease in HR at 70–90% of TED, and an increase in RPEGEN and RPEKE in the last 30% of the event. A greater speed loss and less total time stopped were the factors associated with increased total performance. These results could be explained by theoretical perspectives of a complex regulatory system modulating motor drive in anticipation of perceived difficulties such as elevation changes.


PLOS ONE | 2016

The Effect of Recovery Duration on Vastus Lateralis Oxygenation, Heart Rate, Perceived Exertion and Time Motion Descriptors during Small Sided Football Games.

Scott McLean; Hugo A. Kerhervé; Geoff P. Lovell; Adam D. Gorman; Colin Solomon

Purpose Small sided games (SSG) of football are an effective and efficient format to simultaneously train the physiological, technical, and tactical components of football. The duration of the recovery period between bouts of SSG will affect the physiological response to subsequent bouts. It was hypothesised that decreasing the duration of recovery periods separating serial SSG bouts would increase physiological, and perceptual responses, and decrease high speed running, and distance during SSG bouts. Methods Twelve experienced footballers (mean ± SD; age 21 ± 3 yrs; VO2peak 64 ± 7 ml·min·kg−1; playing experience 15 ± 3 yrs) completed two SSG sessions. Each SSG consisted of 3 vs. 3 players and 6 bouts of 2 min duration, with bouts separated by either 30 s recovery (REC-30) or 120 s recovery (REC-120). Deoxygenated haemoglobin (HHb) in the vastus lateralis (VL) (using near infrared spectroscopy), heart rate (HR) and time motion descriptors (TMD) (speed and distance) were measured continuously during the SSG sessions and perceived exertion (RPE) was measured for each bout. Results During the recovery periods, in REC-30 compared to REC-120, there was a significant (p < 0.05) main effect of a higher HHb and HR. During the bouts, in REC-30 compared to REC-120, there were no significant differences in HHb, HR, RPE, or TMD, but within both REC-30 and REC-120 there were significant increases as a function of bout number in RPE. Conclusions Although a four-fold increase in recovery period allowed a significant increase in the recovery of HHb and HR, this did not increase the physiological, and perceptual responses, or time motion descriptors during the bouts. These results could have been due to the regulation of effort (pacing), in these experienced players performing an exercise task to which they were well adapted.


PLOS ONE | 2016

The Effect of Active versus Passive Recovery Periods during High Intensity Intermittent Exercise on Local Tissue Oxygenation in 18 – 30 Year Old Sedentary Men

Yuri Kriel; Hugo A. Kerhervé; Christopher D. Askew; Colin Solomon

Purpose High intensity interval training (HIIT) has been proposed as a time-efficient format of exercise to reduce the chronic disease burden associated with sedentary behaviour. Changes in oxygen utilisation at the local tissue level during an acute session of HIIT could be the primary stimulus for the health benefits associated with this format of exercise. The recovery periods of HIIT effect the physiological responses that occur during the session. It was hypothesised that in sedentary individuals, local and systemic oxygen utilisation would be higher during HIIT interspersed with active recovery periods, when compared to passive recovery periods. Methods Twelve sedentary males (mean ± SD; age 23 ± 3 yr) completed three conditions on a cycle ergometer: 1) HIIT with passive recovery periods between four bouts (HIITPASS) 2) HIIT with active recovery periods between four bouts (HIITACT) 3) HIITACT with four HIIT bouts replaced with passive periods (REC). Deoxygenated haemoglobin (HHb) in the vastus lateralis (VL) and gastrocnemius (GN) muscles and the pre-frontal cortex (FH), oxygen consumption (VO2), power output and heart rate (HR) were measured continuously during the three conditions. Results There was a significant increase in HHb at VL during bouts 2 (p = 0.017), 3 (p = 0.035) and 4 (p = 0.035) in HIITACT, compared to HIITPASS. Mean power output was significantly lower in HIITACT, compared to HIITPASS (p < 0.001). There was a significant main effect for site in both HIITPASS (p = 0.029) and HIITACT (p = 0.005). There were no significant differences in VO2 and HR between HIITPASS and HIITACT. Conclusions The increase in HHb at VL and the lower mean power output during HIITACT could indicate that a higher level of deoxygenation contributes to decreased mechanical power in sedentary participants. The significant differences in HHb between sites indicates the specificity of oxygen utilisation.


International Journal of Sports Medicine | 2018

Comparison of Prolonged Rowing on Fixed and Free-floating Ergometers in Competitive Rowers

Hugo A. Kerhervé; Benjamin Chatel; Sébastien Reboah; Jérémy Rossi; Pierre Samozino; Laurent Messonnier

This study aimed to compare the effect of a 40-min submaximal rowing exercise performed on ergometers with fixed and free-floating designs. Heart rate, blood lactate concentration, force and rate of force development (RFD) at the handle, stroke rate, duty factor, movement kinematics of upper and lower limbs, and muscle activity of lumbar spine muscles iliocostalis and erector spinae (IC and ESL) were measured at the beginning and at the end of a 40-min rowing exercise at ~60% of peak power output, in eleven competitive rowers. Force of lumbar extension decreased, and blood lactate increased following submaximal exercise on both ergometers. No changes in RFD, duty factor, and muscle activity of IC occurred in response to submaximal exercise. Rowing on DYN elicited higher heart rate and modified rowing kinematics (stroke rate, acceleration of the lower limbs) without changes in temporal or force application patterns compared to rowing on STAT at the same power output. Rowing on DYN was also associated with increased activity of the lumbar spine muscle ESL, which could originate from a greater range of motion, or from an increased lumbar spine muscle activity, at the same overall power.


PeerJ | 2017

Influence of exercise duration on cardiorespiratory responses, energy cost and tissue oxygenation within a 6 hour treadmill run

Hugo A. Kerhervé; Scott McLean; Karen Birkenhead; David Parr; Colin Solomon

Purpose The physiological mechanisms for alterations in oxygen utilization (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}


Experimental Brain Research | 2016

The effect of 6 h of running on brain activity, mood, and cognitive performance

Petra Wollseiffen; Stefan Schneider; Lisa Martin; Hugo A. Kerhervé; Timo Klein; Colin Solomon

\dot {\mathrm{V }}{\mathrm{O}}_{2}


PeerJ | 2016

Pacing during an ultramarathon running event in hilly terrain

Hugo A. Kerhervé; Tom Cole-Hunter; Aaron Wiegand; Colin Solomon

\end{document}V ˙O2) and the energy cost of running (Cr) during prolonged running are not completely understood, and could be linked with alterations in muscle and cerebral tissue oxygenation. Methods Eight trained ultramarathon runners (three women; mean ± SD; age 37 ± 7 yr; maximum \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}

Collaboration


Dive into the Hugo A. Kerhervé's collaboration.

Top Co-Authors

Avatar

Colin Solomon

University of the Sunshine Coast

View shared research outputs
Top Co-Authors

Avatar

Christopher D. Askew

University of the Sunshine Coast

View shared research outputs
Top Co-Authors

Avatar

Scott McLean

University of the Sunshine Coast

View shared research outputs
Top Co-Authors

Avatar

Yuri Kriel

University of the Sunshine Coast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam D. Gorman

University of the Sunshine Coast

View shared research outputs
Top Co-Authors

Avatar

Geoff P. Lovell

University of the Sunshine Coast

View shared research outputs
Top Co-Authors

Avatar

Stefan Schneider

University of the Sunshine Coast

View shared research outputs
Top Co-Authors

Avatar

Timo Klein

University of the Sunshine Coast

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge